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a b s t r a c t 

Knowing the stress tensor inside a body is central to predict the onset of plastic defor- 

mation in an initially elastic solid that is squeezed against a rigid counterface. However, 

recent studies of mechanical contacts between randomly rough solids only elucidated the 

distribution functions and spatial correlations of the normal stress within the interface. 

This work reveals that typical normal and von Mises stresses, the latter being central to 

classical plasticity theory, take their maxima at or near the interface below patches of true 

contact and then decay quite slowly with increasing depth. They only level off at a depth 

that roughly equals the in-plane distance at which the height-difference auto-correlation 

function saturates. The results are rationalized with an extension of Persson theory to in- 

ternal stresses. The central quantity arising from this extension is a depth-dependent, root- 

mean-square height gradient, in which short-wavelength surface ondulations are damped 

out. It allows quick estimates to be made of characteristic, internal peak stresses within 

mechanically loaded solids having randomly rough surfaces. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

When two nominally flat solids touch, true contact only tends to be made at a small fraction of the apparent contact 

area, because even highly polished surfaces maintain non-negligible roughness at small scales ( Bowden and Tabor, 1986; 

Whitehouse and Archard, 1970 ). Load is predominantly carried by the tops of a few peaks, where stresses are consequently 

large, while no external stress acts on deep valleys. Due to the self-affine nature of many natural and technological surface 

topographies ( Majumdar and Tien, 1990; Palasantzas, 1993; Persson, 2014 ), a complex contact geometry arises, which turns 

a reliable prediction of contact stresses into a challenging exercise ( Carpick, 2018; Müser et al., 2017 ). 

It is now agreed upon that typical, local normal stresses at the interface between two nominally flat, elastic solids are of 

the order of the contact modulus E ∗ (defined further below) times the root-mean square (rms) height gradient ḡ ( Campañá

and Müser, 2007; Hyun et al., 2004; Persson, 2001; Prodanov et al., 2013; Putignano et al., 2012; Yastrebov et al., 2015 ). 

The latter is a scale-dependent quantity; the larger the resolution, the finer the features that can be perceived ( Persson, 

20 01; 20 06 ). This is why measurements of not only ḡ but also of other properties, such as the relative contact area a r , turn 

out to be functions of the smallest in-plane distance �r that can be resolved. For a given height spectrum, this insight 

immediately allows a rough estimate to be made on how quickly the normal stress decreases on average with the lateral 

distance �r from a point of contact. Accurate scaling laws including prefactors can be obtained either with Persson theory 

( Persson, 2008; Wang and Müser, 2018 ) or from rigorous contact-mechanics simulations ( Campañá et al., 2008; Wang and 

Müser, 2018 ). 
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While normal surface stresses are certainly interesting to know, successful criteria for the onset of plasticity cannot 

be based on a single stress-tensor element, because plastic flow is usually triggered by the anisotropy of stress. A mea- 

sure for the anisotropy of stress is the von Mises stress σ v , defined as 1.5 times the standard deviation of the principal 

stresses. The most popular, macroscopic yield criterion, applied predominantly to isotropic, ductile materials, requires the 

von Mises stress to remain below the yield strength ( von Mises, 1913 ). So far little is known about the statistical prop- 

erties of von Mises stresses in randomly rough contacts. Persson theory and most large-scale simulations of solids with 

random roughness have been predominantly concerned with interfacial, normal stresses. While the pioneering simulations 

by Pei et al. (2005) considered J2 plasticity in the bulk, the focus was laid on the question how plasticity affects the shape 

and the magnitude of the true contact area. In contrast, this work is concerned with a systematic analysis of how local 

stresses decrease on average with depth below contact patches. Towards this end, simulations and Persson theory address 

various statistical properties of normal and von Mises stresses. 

The simulations and theory presented in this work consider a frictionless contact between a rough, rigid indenter and 

a flat, elastic solid. However, the small-slope approximation ( Johnson, 1985 ) makes it possible to relate the results to other 

systems, in which surface roughness and elastic compliance are divided up more evenly between the two counterfaces. The 

surface roughness is designed to mimic typical surface topographies. It contains a self-affine scaling regime, in which the 

expected height variance averaged over circles of radius r increases as r 2 H ( Schmittbuhl et al., 1995 ), where H is the Hurst 

roughness exponent, plus a roll-off domain, in which the height variance no longer varies noticeably once r exceeds the roll- 

off wavelength λr . The usual linear relations between surface displacement and surface stress are assumed. Stress-tensor 

components decay essentially exponentially with depth at a rate proportional to the wave vector of a height undulation. 

Simulations are run with the Green’s function molecular dynamics (GFMD) technique ( Campañá and Müser, 2006 ). Details 

of the model and the simulations are summarized in the methods section, along with a derivation and discussion of an 

integral transform relating the in-plane (normal) stress autocorrelation function (ACF) to other stress ACFs. The extension of 

Persson theory to internal stresses is developed in the results section. The fundamental idea behind the extension is that 

stress “smears out” with increasing depth in a similar way as with decreasing resolution. Technically, this can be described 

with an effective, depth-dependent rms height gradient, which allows results obtained for interfacial stresses to be ported 

to internal stresses. 

2. Model and methods 

The studied system is an “in-silico contact” composed of a rough, rigid indenter fixed in space and a semi-infinite, elastic 

half space to which a constant external pressure is applied squeezing it against the indenter. The interaction between the 

two bodies is a non-overlap constraint. 

The surface topography of the indenter and the elastic properties of the half space are defined further below in this sec- 

tion. In addition, the employed numerical technique (GFMD) shall be sketched along with some mathematical calculations, 

which are predominantly technical in nature but useful for the analysis and interpretation of the results. This includes the 

derivation of two integral transforms for stress ACFs, which may be interesting in their own right. 

2.1. System geometry 

The mean surface normal of the interface is parallel to the z -axis. Periodic boundary conditions are applied in the xy - 

plane to reduce finite-size effects. The indenter is assigned a height topography h ( r ), where r = (x, y ) is a vector within 

the interfacial plane. h ( r ) is generated assuming the random-phase approximation for the Fourier coefficients ˜ h (q ) , i.e., 
˜ h (q ) ∝ 

√ 

C(q ) exp (i 2 πζq ) , where ζ q is an independent random variable uniformly distributed on (0,1). The proportionality 

constant is chosen such that the ḡ = 1 at infinite resolution. The used height spectrum reads 

C(q ) = 

C 0 · �(q s − q ) 

{ 1 + (q/q r ) 2 } 1+ H , (1) 

where H is the Hurst roughness exponent and �( • ) the Heavyside step function. q r = 2 π/λr and q s = 2 π/λs are the wave 

numbers associated with the roll-off and short wavelength cutoff, respectively. The smooth transition from the self-affine 

domain, where C(q ) ≈ C 0 (q/q r ) 
2(1+ H) , and the roll-off domain, where C ( q ) ≈ C 0 , was chosen, because this represents experi- 

mental data better than a sharp transition ( Majumdar and Tien, 1990; Palasantzas, 1993; Persson, 2014 ). Moreover, ringing 

effects in real-space stress-ACFs are reduced with a smooth transition. 

The default system has a linear size of L = 4 λr with λr = 2 π/q r and a roll-off wavelength of 512 λs . Depending on the 

quantity of interest, different choices for the spectrum were occasionally made. For example, to obtain statistically relevant 

data for the stress distribution function at a depth of z = 50 λs from GFMD, the simulated system was assigned a system 

size of 8 λr (to improve statistics) and the grid spacing increased to 2 λs (to save computer time). 

The height spectrum and the square root of the height-difference ACF G δh ( �r ) pertaining to the default system are shown 

in Fig. 1 . The height difference ACF, 

G δh (�r) ≡
〈{ h (r ) − h (r + �r ) } 2 〉/2 (2) 

allows several central quantities to be readily determined ( Wang and Müser, 2018 ). For example, the height variance corre- 

sponds to G δh ( �r → ∞ ), while ḡ (0) at infinite resolution equals 2 
√ 

G (�r) / �r in the limit of �r → 0. 
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