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a b s t r a c t 

Harmonic axial waves in quasiperiodic-generated structured rods are investigated. The fo- 

cus is on infinite bars composed of repeated elementary cells designed by adopting gener- 

alised Fibonacci substitution rules, some of which represent examples of one-dimensional 

quasicrystals. Their dispersive features and stop/pass band spectra are computed and anal- 

ysed by imposing Floquet–Bloch conditions and exploiting the invariance properties of the 

trace of the relevant transfer matrices. We show that for a family of generalised Fibonacci 

substitution rules, corresponding to the so-called precious means , an invariant function of 

the circular frequency, the Kohmoto’s invariant, governs self-similarity and scaling of the 

stop/pass band layout within defined ranges of frequencies at increasing generation in- 

dex. Other parts of the spectrum are instead occupied by almost constant ultrawide band 

gaps. The Kohmoto’s invariant also explains the existence of particular frequencies, named 

canonical frequencies, associated with closed orbits on the geometrical three-dimensional 

representation of the invariant. The developed theory represents an important advance- 

ment towards the realisation of elastic quasicrystalline metamaterials. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Controlling waves with mechanical metamaterials is an established research field that has reached a certain degree of 

maturity. Two approaches are mainly followed to achieve the goal: one is based on the investigation of dispersion properties 

of periodic structures composed of specifically designed unit or elementary cells ( Kushwaha et al., 1993; Lin, 1962; Sigalas 

and Economou, 1992 ); the other relies on mathematical transformations that dictate the local features of the metamaterial 

necessary, for instance, to steer waves along predetermined paths ( Brun et al., 2009; Colquitt et al., 2014; 2017; Farhat et al., 

2009; Maldovan, 2013; Milton et al., 2006; Norris, 2008; Parnell et al., 2012 ). 

With reference to the first approach, a possible way to conceive the unit cell is that based on quasiperiodic sequences. 

These are formed by a set of –typically two– homogeneous parts combined to create non-periodic patterns which can be 

generally described through deterministic rules (commonly known as generation or substitution rules). Depending on the 

properties of these laws, two distinct classes of quasiperiodic structured media can be identified: quasicrystalline structures 

( Levine and Steinhardt, 1984 ) and non-quasicrystalline deterministic systems ( Huang et al., 1992 ). In the one-dimensional 

setting, a rigorous method of classification for the different quasiperiodic patterns was proposed by Kolar (1993) . Based on 
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this criterion, we define a one-dimensional quasiperiodic chain composed of two distinct elements, say L and S , generated 

according to the generic substitution rule 

L → ς (L ) = M αβ (L, S) , S → ς (S) = N γ δ(L, S) , (1) 

where M αβ (L, S) and N γ δ(L, S) are two building blocks consisting of a certain permutation of α + β and γ + δ elements, 

respectively. Parameters α and β denote the number of elements L and S in ς ( L ), respectively, whilst γ and δ are their 

counterpart in ς ( S ). Introducing the structure parameter w = βγ − αδ, the condition for having a quasicrystalline system is 

w = ±1 . Quasicrystalline media possess very peculiar characteristics that make them an intermediate class of structured ma- 

terials between periodic ordered crystals and random media ( Steurer, 2004; Steurer and Deloudi, 2008 ). A typical example 

of one-dimensional quasicrystalline pattern is represented by the Fibonacci golden sequence for which α = β = γ = 1 and 

δ = 0 , while in plane problems an example of a quasicrystalline tessellation is the Penrose tiling ( Penrose, 1974 ). Conversely, 

an example of non-quasicrystalline deterministic system whose properties are more similar to those of a random media is 

represented by the so-called Thue–Morse chain ( Tamura and Nori, 1989 ). 

The electromagnetic behaviour of one-dimensional quasicrystalline electronic, optical and magnetic media has been ex- 

tensively studied both theoretically ( Kohmoto et al., 1983; 1987; Kolar and Ali, 1989b ) and experimentally ( Laruelle and 

Etienne, 1988 ). All these investigations have shown that although quasicrystalline systems are not periodic, their features 

can be described using quasiperiodic approximants. Moreover, their electronic and optical spectra possess a self-similar or- 

dered layout characterised by scaling laws which cannot be observed in periodic or purely random media ( Kohmoto and 

Oono, 1984 ). 

In mechanics, despite a few attempts to study dispersion properties of elastic Fibonacci-generated waveguides ( Gei, 2010; 

King and Cox, 2007; Zhao et al., 2013 ), the understanding of these scaling phenomena has not yet been satisfactorily ad- 

dressed for quasicrystalline and general quasiperiodic structures. An investigation is therefore required to reveal the basic 

features of dynamic spectra and provide the necessary guidelines for their possible exploitation in the design of novel ar- 

chitectured materials whose stop and pass band topology can be easily modulated and controlled. 

In this paper, waves in one-dimensional phononic quasicrystalline systems for applications in structural mechanics are 

thoroughly studied. In particular, our goals are: 

• to provide a general framework to analyse axial harmonic wave propagation of quasicrystalline generalised Fibonacci 

rods; 

• to highlight the role of trace mapping and that of an invariant function, the Kohmoto’s invariant, in determining the 

properties of harmonic dynamics of such structures; 

• to study the scaling properties of the dynamic spectra exploiting the features of the Kohmoto’s invariant; 

• to investigate the occurrence of ultrawide stop bands occurring in the dynamic spectra; 

• to introduce a special class of quasicrystalline structures, named canonical structures, that display special conservation 

properties in the stop/pass band diagram. 

The outcome of this paper sets out a methodology to be applied to the mechanics of quasicrystalline-generated beams, 

plates and composite materials. 

2. One-dimensional generalised Fibonacci structures 

We introduce a particular class of infinite, one-dimensional, bi-component quasiperiodic structures. Its elements are com- 

posed of a repeated elementary cell where two distinct elements, say L and S , which can be springs, rods or supported 

beams, are arranged in series according to the generalised Fibonacci sequence ( Poddubny and Ivchenko, 2010 ). The repeti- 

tion of such quasiperiodic fundamental cells implies global periodicity along the axis and then the possibility of applying 

the Floquet–Bloch technique in order to study harmonic wave propagation in these systems. The generalised two-component 

Fibonacci sequence is based on the following substitution rule ( Kolar and Ali, 1989b ): 

L → ς (L ) = L m S � , S → ς (S) = L, with m, � ≥ 1 , (2) 

where the exponent indicates the times the base is repeated, i.e. L m = LLL . . . (m times). In terms of the general definition (1) , 

the parameters of the substitutive relation (2) are given by α = m, β = �, γ = 1 , δ = 0 and w = � . Expression (2) implies 

that the finite generalised Fibonacci sequence of the i th order ( i = 0 , 1 , 2 , . . . ), here denoted by F i , obeys the recursive rule 

F i = F 

m 

i −1 F 

� 
i −2 , with m, � ≥1 , (3) 

where the initial conditions are F 0 = S and F 1 = L . The total number of elements of F i corresponds to the generalised 

Fibonacci number ˜ n i given by the recurrence relation 

˜ n i = m ̃

 n i −1 + � ̃  n i −2 , with i ≥ 2 , (4) 

and ˜ n 0 = ˜ n 1 = 1 . The limit σ of the ratio ˜ n i +1 / ̃  n i for i → ∞ is 

σ = lim 

i →∞ 

˜ n i +1 

˜ n i 

= 

m + 

√ 

m 

2 + 4 � 

2 

. (5) 
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