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a b s t r a c t 

The inverse problem of estimating the spatial distributions of elastic material properties 

from noisy strain measurements is ill-posed. However, it is still typically treated as an 

optimisation problem to maximise a likelihood function that measures the agreement be- 

tween the measured and theoretically predicted strains. Here we propose an alternative 

approach employing Bayesian inference with Nested Sampling used to explore parameter 

space and compute Bayesian evidence. This approach not only aids in identifying the basis 

function set (referred to here as a model) that best describes the spatial material property 

distribution but also allows us to estimate the uncertainty in the predictions. Increasingly 

complex models with more parameters generate very high likelihood solutions and thus 

are favoured by a maximum likelihood approach. However, these models give poor pre- 

dictions of the material property distributions with a large associated uncertainty as they 

overfit the noisy data. On the other hand, Bayes’ factor peaks for a relatively simple model 

and indicates that this model is most appropriate even though its likelihood is compara- 

tively low. Intriguingly, even for the appropriate model that has a unique maximum like- 

lihood solution, the measurement noise is amplified to give large errors in the predictions 

of the maximum likelihood solution. By contrast, the mean of the posterior probability dis- 

tribution reduces the effect of noise in the data and predicts the material properties with 

significantly higher fidelity. Simpler model selection criteria such as the Bayesian informa- 

tion criterion are shown to fail due to the non-Gaussian nature of the posterior distribu- 

tion of the parameters. This makes accurate evaluation of the posterior distribution and 

the associated Bayesian evidence integral (by Nested Sampling or other means) impera- 

tive for this class of problems. The output of the Nested Sampling algorithm is also used 

to construct likelihood landscapes. These landscapes show the existence of multiple likeli- 

hood maxima when there is paucity of data and/or for overly complex models. They thus 

graphically illustrate the pitfalls in using optimisation methods to search for maximum 

likelihood solutions in such inverse problems. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Estimating the spatial distributions of mechanical properties in a heterogeneous solid body from the measurements of 

strains or displacements fields has wide ranging applications, including material characterisation, medical diagnosis and civil 
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infrastructure monitoring. For example, there has been a recent burst of activity in the development of smart civil infras- 

tructure and this includes application of strain measurement technologies like fibre optic sensing to monitor the structural 

health of tunnels ( Gue et al., 2015 ), bridges ( Ko and Ni, 2005 ) and concrete sleepers ( Butler et al., 2017 ), to name a few. In 

these applications strains are measured at a small number of discrete locations. In some other applications full field mea- 

surements of the displacement fields within specimens are available. For example, a technique known as “displacements 

under applied loading by Magnetic Resonance Imaging” (dualMRI) has been developed to perform in vivo measurements of 

displacements and strain in musculoskeletal tissues ( Chan et al., 2012 ). In all these cases the spatial distributions of material 

properties is the information of primary interest but displacement and strain information does not directly describe these 

material property distributions. The reconstruction of material property maps from noisy (and sometimes sparsely spaced) 

strain measurements is an ill-posed inverse problem that requires complex modelling approaches. 

A number of methods have been proposed to identify constitutive parameters from strain/displacement measurements; 

readers are referred to Avril et al. (2008) for an overview. Two commonly used approaches are: (i) the finite element model 

updating (FEMU) approach and (ii) the virtual field method (VFM). The former strategy is an optimisation method and 

involves adjusting the parameters in order to minimise the difference between computed and measured strains as measured 

by a likelihood function ( Rouger et al., 1991 ; Molimard et al., 2005 ). This approach can be used for either full field or discrete 

strain data. On the other hand, VFM ( Grédiac, 1989 ) is a direct identification method that does not require any model 

iteration and hence is computationally less expensive but is best suited for full field data. Moreover, in practice, it requires 

a well-chosen mechanical test that excites of all strain components under the known boundary conditions. Examples of 

proposed specimens include a T-shaped specimen under tensile loading ( Grédiac and Pierron, 1998 ) and thick laminated 

composite tubes under compression ( Pierron et al., 20 0 0 ). Nevertheless, there is a strong similarity between these two 

identification methods, at-least in the context of linear elasticity, as discussed by Avril and Pierron (2007) . 

The FEMU and VFM strategies discussed above are best suited for constitutive parameter identification problems in ho- 

mogenous media. In order to use these methods to determine spatial property distributions (for example in heterogeneous 

materials such as the articular cartilage or a structurally deteriorating bridge structure), the unknown constitutive parame- 

ters need to be cast as weights of basis functions used to describe the spatial variations of the material properties. This is in 

fact what is done in the so-called “equilibrium gap” method and is equivalent to VFM with piecewise fields. The resulting 

inverse problem of identifying these weights is typically ill-posed with the outcome not only depending on the solution 

strategy, but also on the choice of the basis functions. Various types of regularisations have been proposed to reduce the 

intrinsic instability of these solutions, but the reconstructed results are inevitably strongly dependent on the choice of the 

regularisation parameters ( Richards et al., 2009 ). Moreover, the instabilities are aggravated by the presence of measurement 

noise. Adjoint-weighted and gradient-based variational methods have recently been proposed in an attempt to stabilise the 

solutions in the presence of measurement noise; see for example Bal and Uhlmann (2013) and Bal et al. (2014) . By contrast, 

Bellis (2017) proposed a reconstruction method based on an integral formulation of the linear elasticity problem whereby a 

given strain field is expressed as the solution of the Lippmann–Schwinger equation. This approach circumvents the underly- 

ing instability issues but is necessarily restricted to linear elasticity and elastic moduli distributions with a small contrast. By 

contrast, Nguyen et al. (2015) proposed a multiscale statistical inverse method for performing the experimental identifica- 

tion of the elastic properties of materials at macro and mesoscales. Their method allows for identification of both the mean 

component and the statistical fluctuations of a stochastic model of the elasticity field of a heterogeneous microstructure 

using experimental data from a single specimen 

Statistical and probabilistic methods are in fact being increasingly used for solutions of ill-posed inverse problems. In 

particular, the Bayesian approach allows for a full characterisation of all possible solutions, and their relative probabilities, 

whilst simultaneously addressing the problems associated with the ill-posed problem in a clear and precise fashion. Readers 

are referred to Stuart (2010) and also the monographs by Kiapio et al . (2005) and Tarantola (2005) for a detailed discussion 

of the mathematical basis of Bayesian inference methods. Bayesian approaches, although computationally expensive to im- 

plement, are starting to lie within the range of the available computational resources especially given that they allow for 

the quantification of uncertainty in inverse problems. Most of current Bayesian approaches use Markov Chain Monte Carlo 

methods and/or filtering to identify maximum posterior solutions with the uncertainty quantified by evaluating the Hessian. 

Examples in solid mechanics include the works of Bui-Thanh et al. (2013) to derive the material property distributions via 

Monte Carlo sampling from seismic measurements and that of Thurin et al. (2017) who used Kalman filtering in a two- 

dimensional Marmousi model. The complete Bayesian calculation of evaluating the posterior distribution and computing 

the Bayesian evidence is avoided in these studies, presumably due to the numerical difficulties associated with such a task. 

Consequently, the fidelity of the implicit approximations in these Bayesian approaches remains unclear for problems in solid 

mechanics. 

In this study we follow a Bayesian approach to the inverse problem of determining spatial material property distribu- 

tions from strain measurements. In particular we do not use Laplacian or other such approximations for the posterior as 

in the majority of previous studies. Rather we propose a method to estimate the entire posterior probability distribution of 

the material properties and thereby quantify the Bayesian evidence in support of particular choices of basis functions. The 

outline of the paper is as follows. We first present an overview of the Bayesian inference technique as applied to the inverse 

problem. Next, we describe the inverse elasticity problem and the Nested Sampling technique used to evaluate posterior 

probability distributions and Bayesian evidence for this elasticity problem. Finally, we discuss the computational results by 

comparing solutions based on Bayesian inference and maximal likelihood. 
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