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a b s t r a c t 

A generalized disclination (g.disclination) theory (Acharya and Fressengeas, 2015) has 

been recently introduced that goes beyond treating standard translational and rotational 

Volterra defects in a continuously distributed defects approach; it is capable of treating the 

kinematics and dynamics of terminating lines of elastic strain and rotation discontinuities. 

In this work, a numerical method is developed to solve for the stress and distortion fields 

of g.disclination systems. Problems of small and finite deformation theory are considered. 

The fields of a single disclination, a single dislocation treated as a disclination dipole, a tilt 

grain boundary, a misfitting grain boundary with disconnections, a through twin boundary, 

a terminating twin boundary, a through grain boundary, a star disclination/penta-twin, a 

disclination loop (with twist and wedge segments), and a plate, a lenticular, and a needle 

inclusion are approximated. It is demonstrated that while the far-field topological identity 

of a dislocation of appropriate strength and a disclination-dipole plus a slip dislocation 

comprising a disconnection are the same, the latter microstructure is energetically favor- 

able. This underscores the complementary importance of all of topology, geometry, and 

energetics in understanding defect mechanics. It is established that finite element approx- 

imations of fields of interfacial and bulk line defects can be achieved in a systematic and 

routine manner, thus contributing to the study of intricate defect microstructures in the 

scientific understanding and predictive design of materials. Our work also represents one 

systematic way of studying the interaction of (g.)disclinations and dislocations as topolog- 

ical defects, a subject of considerable subtlety and conceptual importance (Aharoni et al., 

2017; Mermin, 1979 ). 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

In the context of continuum mechanics, the distortion measure is similar to a deformation or a displacement gradient, 

except such a measure is not the gradient of a vector field in many situations involving material defects. Such a situa- 

tion arises when the distortion represents, through a non-singular field, the ‘gradient’ of a field that contains a terminating 

discontinuity on a surface. If the discontinuity is in the displacement field, the terminating curve is called a dislocation; 

if the discontinuity is in the rotation field, the terminating curve is called a disclination. In some cases, the discontinu- 

ity can arise in the strain field as well, as for instance in the solid-to-solid phase transformation between austenite and 

∗ Corresponding author. 

E-mail address: acharyaamit@cmu.edu (A. Acharya). 

https://doi.org/10.1016/j.jmps.2018.02.004 

0022-5096/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.jmps.2018.02.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jmps
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jmps.2018.02.004&domain=pdf
mailto:acharyaamit@cmu.edu
https://doi.org/10.1016/j.jmps.2018.02.004


C. Zhang et al. / Journal of the Mechanics and Physics of Solids 114 (2018) 258–302 259 

martensite. In Acharya and Fressengeas (2012, 2015) , the concept of the disclination is extended to the generalized disclina- 

tion (g.disclination) to deal with general distortion-discontinuity problems. The g.disclination can be thought of as a discon- 

tinuity (along a curve or loop) of a distortion discontinuity (along a surface). 

The strain and stress fields of dislocations and disclinations in a linear elastic isotropic body have been studied in 

Nabarro (1985) , Nabarro (1967) and DeWit (1973a) . Classical linear elasticity solutions for the stress and strain fields for 

these defects have singularities at the defect cores. Dislocation stress and strain singularities in classical linear theory pre- 

dict infinite total energies for finite bodies which is a troublesome feature. The total energy of a disclination in a finite body, 

however, is bounded ( Zhang and Acharya, 2016 , Section 4). Nonlinear elastic solutions for wedge disclinations in cylindrical 

bodies of compressible semi-linear and Blatz-Ko materials are provided by Zubov (1997) , and Yavari and Goriely (2013) pro- 

vide the same for incompressible Ne-Hookean material response. In several such situations involving nonlinear elastic- 

ity, the stress fields are non-singular. In Acharya and Fressengeas (2012, 2015) , a continuum model is introduced for the 

g.disclination static equilibrium as well as dynamic behaviors, where the singularities are well-handled. The Weingarten the- 

orem for g.disclinations established in Acharya and Fressengeas (2015) is characterized further in Zhang and Acharya (2016) , 

with the derivation of explicit formula for important topological properties of canonical g.disclination configurations. Rela- 

tionships between the representations of the dislocation, disclination, and the g.disclination from the Weingarten point of 

view and in g.disclination theory are established therein. Concrete connections are also established between g.disclinations 

as mathematical objects and the physical ideas of interfacial and bulk line defects like defected grain and phase bound- 

aries, dislocations, and disclinations. The papers ( Acharya and Fressengeas, 2012; 2015; Zhang and Acharya, 2016 ) explain 

the theoretical and physical basis for the results obtained in the present work. 

This paper focuses on the applications of the g.disclination model through computation. The goal is to show that the 

g.disclination model is capable of solving various material-defect problems, within both the small and finite deformation 

settings. Finite element schemes to solve for the stress and energy density fields of g.disclination distributions are proposed, 

implemented, and verified for the small and finite deformation settings, for a ‘canonical’ class of defect configurations (men- 

tioned in the abstract). Our theoretical formalism allows for the description of non-singular cores leading to non-singular 

stress fields even in linear theory. 

The paper is organized as follows. Section 2 contains notation and terminology. In Section 3 , we briefly review ele- 

ments of g.disclination theory from Acharya and Fressengeas (2012, 2015) that provide the governing equations for this 

work, rationalize a procedure for defining a g.disclination as data for computation of stress fields, and discuss the stress 

field of a disclination viewed as an Eshelby cut and weld problem. Section 4 proposes numerical schemes based on the 

Galerkin and Least Squares Finite Element methods to solve for the fields of g.disclinations at small and finite deformations. 

Section 5 contains results pertaining to twelve illustrative problems (with sub-cases), all modeled by appropriate combina- 

tions of g.disclinations, eigenwall fields, and dislocations as data. Section 6 makes contact between the g.disclination model 

and classical disclination theory of DeWit (1973a) , under appropriate restriction on specified data. It is also shown here that 

for identical specified data, g.disclination theory predicts essentially the entire elastic distortion uniquely, while the classical 

theory uniquely predicts only the elastic strain field, a particularly clear distinction for the special case of both models in 

which the data specified is only a dislocation density field. Section 7 contains concluding remarks. 

2. Notation and terminology 

The condition that a is defined to be b is indicated by the statement a := b . The Einstein summation convention is implied 

unless specified otherwise. Ab is denoted as the action of a tensor A on a vector b , producing a vector. A · represents the 

inner product of two vectors; the symbol AD represents tensor multiplication of the second-order tensors A and D . A third- 

order tensor is treated as a linear transformation on vectors to second-order tensors. 

The symbol div represents the divergence, grad represents the gradient. In this paper, all tensor or vector indices are 

written with respect to the basis e i , i = 1 to 3, of a rectangular cartesian coordinate system, unless stated otherwise. In 

component form, 

( A × v ) im 

= e m jk A i j v k 
( B × v ) irm 

= e m jk B ir j v k 
( div A ) i = A i j, j 

( div B ) i j = B i jk,k 

( curl A ) im 

= e m jk A ik, j 

( curl B ) irm 

= e m jk B irk, j 

where e mjk is a component of the alternating tensor X . 

The following list describes some of the mathematical symbols we use in this work: 

U 

e : the elastic strain tensor ( 2 nd -order). 

F e : the elastic distortion tensor. In small deformation, F e = I + U 

e ( 2 nd -order). 

W : the inverse-elastic (i-elastic) 1-distortion tensor. W = (F e ) −1 ( 2 nd -order). 
ˆ F e : the closest-well elastic distortion tensor ( 2 nd -order). 
ˆ W : the closest-well-inverse-elastic (cwi-elastic) 1-distortion tensor. ˆ W = ( ̂  F e ) −1 ( 2 nd -order). S : the eigenwall tensor ( 3 rd - 

order). 
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