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a b s t r a c t

The overwhelming majority of experimental tests on rocks have only been conducted for a
single value of the Lode angle θ corresponding to the axisymmetric compression (AC).
There are now sufficiently extensive data sets from both AC and axisymmetric extension
(AE) tests (corresponding to two extreme θ values) for two materials (synthetic rock
analog GRAM1 and Solnhofen Limestone). These data cover a wide range of the confining
pressure (from brittle faulting to ductile flow). Very recently the data from true 3-D tests
(for different θ) also covering both brittle and ductile fields were published for Castlegate
and Bentheim Sandstone as well. The results from all these tests summarized and pro-
cessed in this paper constitute a solid basis which allows general conclusions to be drawn
about the dependence of rock behavior on θ . In all cases, the yield/failure envelopes were
shown to be θ-dependent so that the material strength at low mean stress σ is smaller
under AE than under AC, while at high σ , it is the opposite. The brittle-ductile transition
under AE occurs at σ �1.5 times greater than under AC, meaning that under AE the
material is more prone to fracture development. The angle between the most compressive
stress and the forming deformation localization bands is systematically higher for AE than
for AC for the same σ . Based on these data we formulate a new three-invariant constitutive
model with convex and concave yield functions (YFs) which is used for the bifurcation
analysis. The results of this analysis agree with the experimental data (for both YFs) and
reveal that the θ-dependence of rock properties encourages the strain localization. The
major factors defining this dependence are the θ-dependence of the YFs but also of the
dilatancy factor which is greater for AE than for AC. The theoretical results show that the
failure (deformation band) plane can deviate from the intermediate stress direction and
can become parallel to the maximum compressive stress at high σ for the concave YF.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

It has long been known that the strength of geomaterials under compression τ̄c
pk can be considerably higher than that

under extension τ̄ex
pk for the same mean stress σ (Mogi, 1967, 1971; Chang and Haimson, 2000; Haimson and Chang, 2000;

Haimson and Rudnicki, 2010; Haimson, 2011; Lee and Haimson, 2011), where τ̄ is the von Mises stress, the superscript “pk”
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stands for the peak stress values corresponding to the onset of the material rupture, and the subscripts “c” and “ex” are
compression and extension, respectively. Using an exceptionally large data set for the low porosity Solnhofen limestone
from axisymmetric compression (AC) and axisymmetric extension (AE) conventional tests conducted under different con-
fining pressure Pc , Heard (1960) was the first to show that this is true only up to a certain value of σ . Above this value the
relation between τ̄c

pk and τ̄ex
pk is inversed, τ̄ex

pk becoming greater than τ̄c
pk. This author also demonstrated for the first time that

the transition from brittle to ductile behavior under extension occurs at σ value, σex
bdt , almost twice (�1.7) that under

compression, σc
bdt (the superscript “bdt” stands for brittle-ductile transition). In other words, rock behavior under extension

is much more brittle than under compression. Therefore the extension loading is more prone to fracture development even
at high pressure. These fundamental discoveries did not receive much attention from the geomechanics community and
until recently were not confirmed because the overwhelming majority of rock tests were limited to a single AC loading type.
Heard's results were only confirmed 50 years later by Nguyen et al. (2011). These authors conducted a wide series of both AC
and AE tests under various Pc on synthetic Granular Rock Analog Material (GRAM1) consisting of “welded” TiO2 particles.
The nature of GRAM1 is obviously very different from that of Solnhofen limestone and it has more than two orders of
magnitude lower strength, but the mechanical behavior of these two materials is very similar including the σ σ/ex

bdt
c
bdt ratio,

Nomenclature

G shear modulus
K bulk modulus
E Young's modulus
ν Poisson's ratio
θ Lode angle
σij stress tensor ( =i j, 1, 2, 3)
σi principal stresses
sij stress deviator tensor
δij Kronecker delta
σ1 maximum compression stress
σ2 intermediate principal stress
σ mean stress
σcr mean stress at the crest of initial yield

envelopes
J3 third invariant of stress deviator
ψ angle between σ2-parallel deformation locali-

zation bands (planes) and σ1 direction
ψ* angle between σ1-parallel deformation bands

and σ2 direction
ψΔ ψ θ ψ θ( = °) − ( = °)0 60
ψΔ B, ψΔ C ψΔ for Bentheim and Castlegate sandstones
ψ ψΔ Δ,G S ψΔ for GRAM1 material, and Solnhofen

limestone
ξ equal to ψcos 2 , Eq. (32).
ni unit normal to deformation localization bands

in the principal stress space
AC axisymmetric compression
AE axisymmetric extension
YS yield surface
YF yield function
σbdt mean stress at brittle-ductile transition
σc

bdt , σex
bdt mean stress at brittle-ductile transition for AC

and AE, respectively
ψc

bdt , ψex
bdt ψ at brittle-ductile transition for AC and AE,

respectively
τ̄ von Mises stress
F yield function
Φ plastic potential function
τ σ¯ ( )c , τ σ¯ ( )ex initial yield functions for AC and AE,

respectively
σ0 mean stress at the intersection of τ σ¯ ( )c , τ σ¯ ( )ex

τ̄c
pk, τ̄ex

pk von Mises stress at stress peaks for AC and AE
loading, respectively

Pc confining pressure in conventional tests
*P confining pressure in hydrostatic tests at the

onset of grain crushing
qr coefficients in Eq. (1); ( =r 1, 2...5)
am coefficients in the function σ σ σ( ),1 2 3 given in

the caption of Fig. 2; ( =m 1, 2...6)
A B C, , functions defined in Eq. (3).
w w w, ,1 2 coefficients (exponents) in the yield function,

Eq. (2).
α internal friction coefficient
β dilatancy factor
fij equal to σ∂ ∂F/ ij

σf equal to σ∂ ∂F/ , defines the internal friction
coefficient α

τ̄f equal to τ∂ ∂¯F/

θf equal to θ∂ ∂F/
Ωij equal to θ σ∂ / ij

gij equal to Φ σ∂ ∂/ ij

σg equal to Φ σ∂ ∂/ , defines the dilatancy factor β
ε ε ε, ,ij ij

el
ij
p total, elastic, and inelastic strain tensors,
respectively

eij
p inelastic strain deviator tensor

γ̄ p accumulated inelastic equivalent shear strain
α0 parameter linking α βand in Eq. (10).

λd non-negative scalar function in the flow rule,
Eq. (8).

H hardening modulus
=h H G/ normalized hardening modulus

hcr critical hardening modulus h when deforma-
tion bands are parallel to σ1, Eq. (38).

*hcr critical hardening modulus when deformation
bands are parallel to σ2, Eq. (39).

hcr
dp critical hardening modulus for the Drucker-

Prager model, Eq. (41).
Δhcr equal to hcr– *hcr

Δhcr
dp equal to hcr–hcr

dp

Q and R defined in Eqs. (31), (35), (36).
L L L, ,ijkl ijkl

el
ijkl
p total, elastic, and inelastic stiffness tensors
(i, j, k, l¼1, 2, 3)

ω Λ*I I, , ,kl ij defined in Eqs. (23)–(28).
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