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This work introduces original explicit solutions for the elastic fields radiated by non-
uniformly moving, straight, screw or edge dislocations in an isotropic medium, in the form
of time-integral representations in which acceleration-dependent contributions are ex-
plicitly separated out. These solutions are obtained by applying an isotropic regularization
procedure to distributional expressions of the elastodynamic fields built on the Green
tensor of the Navier equation. The obtained regularized field expressions are singularity-
free, and depend on the dislocation density rather than on the plastic eigenstrain. They
cover non-uniform motion at arbitrary speeds, including faster-than-wave ones. A nu-
merical method of computation is discussed, that rests on discretizing motion along an
arbitrary path in the plane transverse to the dislocation, into a succession of time intervals
of constant velocity vector over which time-integrated contributions can be obtained in
closed form. As a simple illustration, it is applied to the elastodynamic equivalent of the
Tamm problem, where fields induced by a dislocation accelerated from rest beyond the
longitudinal wave speed, and thereafter put to rest again, are computed. As expected, the
proposed expressions produce Mach cones, the dynamic build-up and decay of which is
illustrated by means of full-field calculations.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Dislocations are line defects whose motion is responsible for plastic deformation in crystalline materials (Hirth and
Lothe, 1982). To improve the current understanding of the plastic and elastic fronts (Clifton and Markenscoff, 1981) that go
along with extreme shock loadings in metals (Meyers et al., 2009), Gurrutxaga-Lerma et al. (2013) have recently proposed
dynamic simulations of large sets of dislocations mutually coupled by their retarded elastodynamic field. Gurrutxaga-Lerma
et al. (2014) review the matter and its technical aspects in some detail. This new approach is hoped to provide com-
plementary insights over multi-physics large-scale atomistic simulations of shocks in matter (Zhakhovsky et al., 2011). If we
leave aside the subsidiary (but physically important) issue of dislocation nucleation, dislocation-dynamics simulations in-
volve two separate but interrelated tasks. First, one needs to compute the field radiated by a dislocation that moves arbi-
trarily. Second, given the past history of each dislocation, the current dynamic stress field incident on it due to the other
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ones, and the externally applied stress field (e.g., a shock-induced wavefront), the further motion of the dislocation must be
determined by a dynamic mobility law. While some progress has recently been achieved in the latter subproblem—which
involves scarcely explored radiation-reaction effects and dynamic core-width variations (Pellegrini, 2014)—the focus of the
present paper is on the former—a very classical one.

Indeed, substantial effort has been devoted over decades to obtaining analytical expressions of elastodynamic fields
produced by non-uniformly moving singularities such as point loads (Stronge, 1970; Freund, 1972, 1973), cracks, and dis-
locations. Results ranged, e.g., from straightforward applications to linear-elastic and isotropic unbounded media, to systems
with interfaces such as half-spaces (Lamb's problem) or layered media (Eatwell et al., 1982); coupled phenomena such as
thermoelasticity (Brock et al., 1997) or anisotropic elastic media (Markenscoff and Ni, 1987; Wu, 2000), to mention but a few
popular themes. Elastodynamic fields of dislocations have been investigated in a large number of works, among which
Eshelby (1951), Kiusalaas and Mura (1964, 1965), Mura (1987), Nabarro (1967), Brock (1979, 1982, 1983), Markenscoff
(1980), Markenscoff and Ni (2001a,b), Pellegrini (2010) and Lazar (2011b, 2012, 2013a,b). Early numerical implementations
of time-dependent fields radiated by moving sources (Niazy, 1975; Madariaga, 1978) were limited to material displacements
or velocities. As to stresses, Gurrutxaga-Lerma et al. (2014) based their simulations on the fields of Markenscoff and Clifton
(1981) relative to a subsonic edge dislocation. Nowadays dynamic fields of individual dislocations or cracks are also in-
vestigated by atomistic simulations (Li and Shi, 2002; Tsuzuki et al., 2009; Spielmannova et al., 2009), or numerical solutions
of the wave equation by means of finite-element (Zhang et al., 2015), finite-difference, or boundary-integral schemes (Day
et al., 2005). Hereafter, the analytical approach is privileged so as to produce reference solutions.

Disregarding couplings with other fields such as temperature, one might be tempted to believe that the simplest two-
dimensional problem of the non-uniform motion of rectilinear dislocation lines in an unbounded, linear elastic, isotropic
medium, leaves very little room for improvements over past analytical works. This is not so, and our present concerns are as
follows:

(i) Subsonic as well as supersonic velocities. In elastodynamics, from the 1970's onwards, the method of choice for ana-
lytical solutions has most often been the one of Cagniard improved by de Hoop (Aki and Richards, 2009), whereby Laplace
transforms of the fields are inverted by inspection after a deformation of the integration path of the Laplace variable has
been carried out by means of a suitable change of variable (see above-cited references). However, to the best of our
knowledge, no such solutions can be employed indifferently for subsonic and supersonic motions, in the sense that the
supersonic case need be considered separately in order to get explicit results as, e.g., in Stronge (1970), Freund (1972), Callias
and Markenscoff (1980), Markenscoff and Ni (2001b) and Huang and Markenscoff (2011). Indeed, carrying out the necessary
integrals usually requires determining the wavefront position relatively to the point of observation. To date, the supersonic
edge dislocation coupled to both shear and longitudinal waves has not been considered, and existing supersonic analytical
solutions for the screw dislocation have not proved usable in full-field calculations, except for the rather different solution
obtained within the so-called gauge-field theory of dislocations (Lazar, 2009), which appeals to gradient elasticity. Thus, one
objective of the present work is to provide ‘automatic’ theoretical expressions that do not require wavefront tracking, for
both screw and edge dislocations, and can be employed whatever the dislocation velocity. To this aim, we shall employ a
method different from the Cagniard-de Hoop one. This is not to disregard the latter but following a different route was
found more convenient in view of the remaining points listed here.

(ii) Distributions and smooth regularized fields. For a Volterra dislocation in supersonic steady motion, fields are typically
concentrated on Dirac measures along infinitely thin lines, to form Mach cones (Stronge, 1970; Callias and Markenscoff,
1980; Weertman and Weertman, 1980). Thus, the solution is essentially of distributional nature, and its proper character-
ization involves, beside Dirac measures, the use of principal-value and finite-parts prescriptions (Pellegrini and Lazar, 2015).
Of course, in-depth analytical characterizations of wavefronts singularities can still be extracted out of Laplace-transform
integral representations (Freund, 1972, 1973; Callias and Markenscoff, 1980). However their distributional character implies
that the solutions cannot deliver meaningful numbers unless they are regularized by convolution with some source shape
function representing a dislocation of finite width. Only by this means can field values in Mach cones be computed. Con-
sequently, another objective is to provide field expressions for an extended dislocation of finite core width (instead of a
Volterra one), thus taming all the field singularities that would otherwise be present at wavefronts and at the dislocation
location, where Volterra fields blow up. In the work by Gurrutxaga-Lerma et al. (2013), a simple cut-off procedure was
employed to get rid of infinities. Evidently, a similar device cannot be used with Dirac measures, which calls for a smoother
and more versatile regularization. Various dislocation-regularizing devices have been proposed in the past, some consisting
in expanding the Volterra dislocation into a flat Somigliana dislocation (Eshelby, 1949, 1951; Markenscoff and Ni, 2001a,b;
Pellegrini, 2011). Such regularizations remove infinities, but leave out field discontinuities on the slip path (Eshelby, 1949). A
smoother approach consisting in introducing some non-locality in the field equations has so far only be applied to the time-
dependent motion of a screw dislocation. The one to be employed hereafter, introduced in Pellegrini and Lazar (2015),
achieves an isotropic expansion the Volterra dislocation and smoothly regularizes all field singularities for screw and edge
dislocations. In this respect, it resembles that introduced in statics by Cai et al. (2006). However, we believe it better suited
to dynamics.

(iii) Field-theoretic framework. The traditional method of solution (Markenscoff, 1980) rests on imposing suitable
boundary conditions on the dislocation path. It makes little contact with field-theoretic notions of dislocation theory such as
plastic strain, or dislocation density and current used in purely numerical methods of solution (Djaka et al., 2015). Instead,
we wish our analytical results to be rooted on a field-theoretic background. One advantage is that the approach will provide
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