Author's Accepted Manuscript

From yield to fracture, failure initiation captured by molecular simulation

Laurent Brochard, Ignacio G. Tejada, Karam Sab

PII: S0022-5096(16)30042-4

http://dx.doi.org/10.1016/j.jmps.2016.05.005 DOI:

Reference: MPS2892

Journal of the Mechanics and Physics of Solids To appear in:

Received date: 20 January 2016 Revised date: 21 April 2016 Accepted date: 3 May 2016

Cite this article as: Laurent Brochard, Ignacio G. Tejada and Karam Sab, Fron yield to fracture, failure initiation captured by molecular simulation, Journal c the **Mechanics** and **Physics** Solids of http://dx.doi.org/10.1016/j.jmps.2016.05.005

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

From Yield to Fracture, Failure Initiation Captured by Molecular Simulation

Laurent Brochard^{a,*}, Ignacio G. Tejada^b, Karam Sab^a

^a Université Paris-Est, Laboratoire Navier (UMR 8205), CNRS, ENPC, IFSTTAR
 ⁶ & 8 avenue Blaise Pascal, 77455 Marne-la-Vallée, France.
 ^b Université Grenoble Alpes, 3SR, CNRS
 Domaine Universitaire BP53, 38041 Grenoble Cedex 9, France

Abstract

While failure of cracked bodies with strong stress concentrations is described by an energy criterion (fracture mechanics), failure of flawless bodies with uniform stresses is captured by a criterion on stress (yielding). In-between those two cases, the problem of failure initiation from flaws that moderately concentrate stresses is debated. In this paper, we propose an investigation of the process of failure initiation at the atomic scale by mean of molecular simulations. We first discuss the appropriate scaling conditions to capture initiation, since system sizes that can be simulated by molecular mechanics are strongly limited. Then, we perform a series of molecular simulations of failure of a 2D model material, which exhibits strength and toughness properties that are suitable to capture initiation with systems of reasonable sizes. Transition from fracture failure to yield failure is well characterized. Interestingly, in some specific cases, failure exceeds yield failure which is in contradiction with most initiation theories. This occurs when stress are highly concentrated while little mechanical energy is stored in the material. This observation calls for a theory of initiation which requires that both stress and energy are necessary conditions of failure. Such an approach was proposed by Leguillon (2002). We show that the predictions of this theory are consistent with the molecular simulation results.

Keywords: Failure initiation, molecular simulation, fracture, yield

Email address: laurent.brochard@enpc.fr (Laurent Brochard)

^{*}Corresponding author

Download English Version:

https://daneshyari.com/en/article/7177637

Download Persian Version:

https://daneshyari.com/article/7177637

<u>Daneshyari.com</u>