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a b s t r a c t

Grain-scale local fluid flow is an important loss mechanism for attenuating waves in
cracked fluid-saturated poroelastic rocks. In this study, a dynamic elastic modulus model
is developed to quantify local flow effect on wave attenuation and velocity dispersion in
porous isotropic rocks. The Eshelby transform technique, inclusion-based effective med-
ium model (the Mori–Tanaka scheme), fluid dynamics and mass conservation principle
are combined to analyze pore-fluid pressure relaxation and its influences on overall elastic
properties. The derivation gives fully analytic, frequency-dependent effective bulk and
shear moduli of a fluid-saturated porous rock. It is shown that the derived bulk and shear
moduli rigorously satisfy the Biot-Gassmann relationship of poroelasticity in the low-
frequency limit, while they are consistent with isolated-pore effective medium theory in
the high-frequency limit. In particular, a simplified model is proposed to quantify the
squirt-flow dispersion for frequencies lower than stiff-pore relaxation frequency. The
main advantage of the proposed model over previous models is its ability to predict the
dispersion due to squirt flow between pores and cracks with distributed aspect ratio in-
stead of flow in a simply conceptual double-porosity structure. Independent input para-
meters include pore aspect ratio distribution, fluid bulk modulus and viscosity, and bulk
and shear moduli of the solid grain. Physical assumptions made in this model include
(1) pores are inter-connected and (2) crack thickness is smaller than the viscous skin
depth. This study is restricted to linear elastic, well-consolidated granular rocks.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

The presence of microscale cracks can have a large effect on the effective elastic properties of a solid even if the fractional
volume occupied by the cracks is extremely small. The state of fluid saturation of the cracks has a corresponding large effect.
When a cracked rock is compressed by passing waves, the fluid pressure response in the compliant/soft cracks will be
greater than that in the stiffer pores. The induced pressure gradient creates grain-scale local flow from crack to adjacent
pores. The resulting fluid flow is called “squirt flow (SF)” (e.g., Mavko and Nur, 1975) which also occurs in shear waves. In
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turn, the SF attenuates waves and changes effective elastic properties of rocks (e.g., David et al., 2013). Previous studies show
that the SF appears to be an important physical mechanism in attenuating waves at sonic and ultrasonic frequencies (Mavko
and Nur, 1975, 1979; Jones, 1986). Compared with Biot's global flow mechanism (Biot, 1956a, b), in which viscous-fluid
motion is induced by the wavelength-scale fluid pressure gradient, the SF is a consequence of pore microstructural geo-
metry and can produce much greater phase velocity dispersion and wave attenuation. The SF can give rise to significant
hydrocarbon signature in the acoustic measurement (Tang et al., 2012) and affect the borehole signals (Markova et al., 2013).
Over the years, many efforts have been made to develop unified models of global flow and squirt flow for dynamics of
macroscopically homogeneous porous rocks having grain-scale cracks. Those include works by Dvorkin and Nur (1993),
Jakobsen and Chapman (2009), Gurevich et al. (2010), Tang (2011) and Tang et al. (2012). We restrict this discussion to
situations in which the Biot global flow mechanism is neglected.

In the low-frequency limit, the pore fluid pressure is in equilibrium. The elastic properties of rocks are described by
Gassmann's equations (Gassmann, 1951), in which undrained (or relaxed) bulk modulus are calculated from drained (or dry)
bulk modulus, solid grain bulk modulus, fluid bulk modulus and porosity, while undrained shear modulus is identical to
drained shear modulus. Experimental data presented by Thomsen (1985) suggests that the Gassmann's equations are indeed
satisfied for a wide range of different rock types. Pride and Berryman (1998) related variables controlled and measured in
elastostatic laboratory experiments to the appropriate variables of poroelastic theory. With increasing frequency, induced
fluid pressure in cracks stiffens rocks, resulting in frequency-dependent velocities.

In the high-frequency limit (in which wavelength is required to be still larger than porous representative volume element),
the fluid pressure does not have enough time to equilibrate between pores. Then no fluid mass communication occurs so that
all pores behave like isolated inclusions. It is more appropriate to estimate the unrelaxed effective elastic moduli using ef-
fective medium theory. Recently, David and Zimmerman (2012) developed a procedure to extract the pore aspect ratio dis-
tribution from the dry velocities. Their results showed that for ultrasonic velocity measurements, the predictions of saturated
velocities using Mori–Tanaka (MT) scheme (Mori and Tanaka, 1973; Benveniste, 1987) and differential effective medium
(LeRavalec and Guéguen, 1996) matched well the experimental data for a good number of sandstone data sets.

On the other hand, for a certain porous sample, its pore structure cannot change with frequency. The SF dispersion is
solely due to pore-microstructure-induced fluid pressure relaxation. Because of this, the effective medium schemes are also
widely used to estimate the static undrained elastic moduli (e.g., Berryman, 1981; Xu and White, 1995; LeRavalec and

Nomenclature

ϕ total porosity
ϕc total crack porosity
ϕp total stiff-pore porosity
ϕi,ϕc

i, ϕp
i porosity of the ith pore, crack, stiff pore

γ i aspect ratio of the ith crack
γp aspect ratio of the stiff pores
v volume of a rock sample

ϕv volume of the total pore space
vc

i , vp
i volume of the ith crack, stiff pore

vp volume of the total stiff pores
L0, K0, G0 elastic modulus tensor, bulk and shear moduli

of solid grain
ν0 Poisson's ratio of the solid grain
Lf , Kf elastic modulus tensor, bulk modulus of pore

fluid
ρf , η density, viscosity of pore fluid
Ld, Kd, Gd elastic modulus tensor, bulk and shear moduli

of dry sample
L , K , G effective elastic modulus tensor, bulk and

shear moduli
f , ω frequency, circular frequency
Si, Sc

i , Sp
i Eshelby tensor of the ith pore, crack, stiff pore

σi, σc
i , σp

i averaged fluid stress tensor in the ith pore,
crack, stiff pore

ec
i , ep

i strain tensor of the ith crack, stiff pore
ecf

i , epf
i fluid strain tensor in the ith crack, stiff pore

qc
i, qp

i volumetric flow out of the ith crack, stiff pore
qp averaged volumetric flow over stiff pores

ϕe averaged pore strain over all pore space
ef averaged fluid strain over all pore space

∞e externally applied strain
σf averaged pore fluid stress tensor over all pore

space
pc

i , pp
i averaged fluid pressure in the ith crack, stiff

pore
p̃c

i deformation-induced fluid pressure in the ith
crack

pp averaged fluid pressure over stiff pores
pf averaged fluid pressure over all pores
r , θ , z cylindrical coordinates
vr , θv , vz fluid velocity components in a crack
uf fluid particle displacement vector in a crack

(= ˜)k kr , kz wavenumber components in a crack
fc

i relaxation function of the ith crack
Np number of stiff pores
Sc upper and lower surfaces of a crack
n normal vector directed outward from crack

fluid
h, R thickness, radius of a crack
L effective distance between stiff pores
S effective flow cross section area of stiff pores
δ dimensionless constant for stiff pores
Q c

i , Q p
i transform tensor relating ∞e to qc

i , qp
i

Dc
i , Dp

i , C transform tensor relating ∞e to σc
i , σp

i , σf

T̃c
i T̃p

i , ˜ϕT transform tensor relating ∞e to ec
i , ep

i , ϕe
Tc

i , Tp
i transform tensor relating ∞e to ec

i , ep
i for iso-

lated pores
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