
Phase field approach with anisotropic interface energy
and interface stresses: Large strain formulation

Valery I. Levitas a, James A. Warren b

a Iowa State University, Departments of Aerospace Engineering, Mechanical Engineering, and Material Science and Engineering, Ames,
IA 50011, USA
b Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA

a r t i c l e i n f o

Article history:
Received 21 September 2015
Received in revised form
22 December 2015
Accepted 7 February 2016
Available online 8 March 2016

Keywords:
Phase field approach
Phase transformation
Large strains
Anisotropic interface energy and interface
stresses

a b s t r a c t

A thermodynamically consistent, large-strain, multi-phase field approach (with con-
sequent interface stresses) is generalized for the case with anisotropic interface (gradient)
energy (e.g. an energy density that depends both on the magnitude and direction of the
gradients in the phase fields). Such a generalization, if done in the “usual”manner, yields a
theory that can be shown to be manifestly unphysical. These theories consider the gra-
dient energy as anisotropic in the deformed configuration, and, due to this supposition,
several fundamental contradictions arise. First, the Cauchy stress tensor is non-symmetric
and, consequently, violates the moment of momentum principle, in essence the Herring
(thermodynamic) torque is imparting an unphysical angular momentum to the system. In
addition, this non-symmetric stress implies a violation of the principle of material ob-
jectivity. These problems in the formulation can be resolved by insisting that the gradient
energy is an isotropic function of the gradient of the order parameters in the deformed
configuration, but depends on the direction of the gradient of the order parameters (is
anisotropic) in the undeformed configuration. We find that for a propagating none-
quilibrium interface, the structural part of the interfacial Cauchy stress is symmetric and
reduces to a biaxial tension with the magnitude equal to the temperature- and orienta-
tion-dependent interface energy. Ginzburg–Landau equations for the evolution of the
order parameters and temperature evolution equation, as well as the boundary conditions
for the order parameters are derived. Small strain simplifications are presented. Re-
markably, this anisotropy yields a first order correction in the Ginzburg–Landau equation
for small strains, which has been neglected in prior works. The next strain-related term is
third order. For concreteness, specific orientation dependencies of the gradient energy
coefficients are examined, using published molecular dynamics studies of cubic crystals.
In order to consider a fully specified system, a typical sixth order polynomial phase field
model is considered. Analytical solutions for the propagating interface and critical nucleus
are found, accounting for the influence of the anisotropic gradient energy and elucidating
the distribution of components of interface stresses. The orientation-dependence of the
nonequilibrium interface energy is first suitably defined and explicitly determined ana-
lytically, and the associated width is also found. The developed formalism is applicable to
melting/solidification and crystal-amorphous transformation and can be generalized for
martensitic and diffusive phase transformations, twinning, fracture, and grain growth, for
which interface energy depends on interface orientation of crystals from either side.
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1. Introduction

Phase field approach: Ginzburg–Landau, or phase field, approaches are routinely used to simulate various structural
changes, including first-order solid–solid phase transformations (PTs) (Artemev et al., 2001; Chen, 2002; Finel et al., 2010;
Jin et al., 2001a; Levitas et al., 2004; Levitas and Lee, 2007; Vedantam and Abeyaratne, 2005), melting (Anderson et al., 2001;
Slutsker et al., 2006; Wheeler and McFadden, 1997), and also the evolution of multigrain structures (Kobayashi et al., 1998),
as well as twinning (Clayton and Knap, 2011a,b; Hildebrand and Miehe, 2012; Levitas et al., 2009, 2013; Levitas and Roy,
2015). There are a number of books on the phase field approach (Provatas and Elder, 2010; Salje, 1991; Toledano and
Dmitriev, 1996; Toledano and Toledano, 1998; Umantsev, 2012), but these, however, do not include any substantial treat-
ment of mechanics. In phase field modeling, the central concept is the introduction of order parameters ηi that describe
material instabilities during PTs in a continuous way. The energy density of the system depends on the strain tensor,
temperature, the order parameters, and their gradients, which provides an energy penalty for the formation of interfaces.
For a given strain and temperature, the energy density has as many minima in the order parameter space as there are
accessible phases or structural states of system. The time evolution of the order parameters describes the evolution of a
multi-connected microstructure. This evolution is obtained by the solution of the Ginzburg–Landau equations, which re-
present linear relationships between ηi̇ and the generalized forces Xi thermodynamically conjugated to ηi̇, and coupled to all
equations derived through continuum thermomechanics. The phase field approach is computationally attractive because the
interfaces between phases appear and evolve automatically as a result of the solution to the above-mentioned equations
obviating the need to develop special methods for tracking them. The main theoretical advantage of the phase field ap-
proach, in comparison with sharp interface approach, is that it contains information about all intermediate states between
phases and corresponding energy barriers, as well as including stationary heterogeneous intermediate states such as critical
nuclei. Before examining phase field models in detail, however, we now explore the classical ideas that frame the analysis of
interface motion in systems under stress.

Interface energy and generalized forces: Classically, a sharp interface between two phases has a total interface energy
∫Γ γ= dA or, for a homogeneous γ, Γ γ= A, where A is the interface area in the deformed state at a point in time and γ is the

interface energy per unit area. For liquid–liquid and liquid–gas interfaces, γ is independent of the change in interface area
and consequently interface strain. For interfaces that involve solid phases, γ may dependent on the change in interface area
due to interface strain. For an anisotropic interface energy we write γ γ= ( )k , where k is the unit normal to the interface. An
interface is subjected to the following generalized forces related to three different processes of its evolution.

(a) Generalized forces preventing interface contraction called interface stresses (Gibbs, 1948), which represent the biaxial
tension within interface (Fig. 1a). In the simplest case of small strain and isotropic stresses within interface, the magnitude
σ̄ S of the interface stress is defined by the following equation:

σ Γ γ γ γ σ γ γ γ γ ε σ σ¯ = = ( ) = ( + ∂ ∂ ) ⇒ ¯ = + ∂ ∂ = + ∂ ∂ = ¯ + ¯ ( )dA d d A A A dA A A/ / / , 1S S
s st e

S

where ε =d dA A/s is the increment of the interface strain and subscript st indicates the structural part of the interface
stresses. This is the Shuttleworth equation (Shuttleworth, 1950), see also review by Fischer et al. (2008). The interface stress
consists of two parts, one, σ γ¯ =st , is the same as for a liquid–liquid interface, and another, σ̄e

S , is due to elastic deformation of
an interface. The later can be anisotropic, i.e., tensorial, in more general case. Note that the expressions with a “bar” above
them, such as σ̄ S , have units of force per unit length, and the notation is used to distinguish these quantities from actual
stresses (i.e., force per area), which can be singular at the interface in the sharp interface limit.

Fig. 1. A representation of the generalized forces acting at an interface. (a) Interface stresses, which represent biaxial tension and contribute directly to
mechanics, i.e., to the momentum equation; (b) the driving force for the translational interface propagation XΣ (the Eshelby driving force, shown con-
ditionally as a vector) and for the interface reorientation Xk (Herring torque). Both XΣ and Xk are thermodynamic (configurational) forces, which do not
contribute directly to the mechanics of the system, namely, momentum balance and the moment of momentum principle. (c) Artificial nonsymmetric
interface shear stresses, which appear in the previous theories and are eliminated in the current paper. They produce torque, which violates the moment of
momentum principle.
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