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a b s t r a c t

A solid is said to be flexoelectric when it polarizes in proportion to strain gradients. Since
strain gradients are large near defects, we expect the flexoelectric effect to be prominent
there and decay away at distances much larger than a flexoelectric length scale. Here, we
quantify this expectation by computing displacement, stress and polarization fields near
defects in flexoelectric solids. For point defects we recover some well known results from
strain gradient elasticity and non-local piezoelectric theories, but with different length
scales in the final expressions. For edge dislocations we show that the electric potential is
a maximum in the vicinity of the dislocation core. We also estimate the polarized line
charge density of an edge dislocation in an isotropic flexoelectric solid which is in
agreement with some measurements in ice. We perform an asymptotic analysis of the
crack tip fields in flexoelectric solids and show that our results share some features from
solutions in strain gradient elasticity and piezoelectricity. We also compute the energy
release rate for cracks using simple crack face boundary conditions and use them in
classical criteria for crack growth to make predictions. Our analysis can serve as a starting
point for more sophisticated analytic and computational treatments of defects in flexo-
electric solids which are gaining increasing prominence in the field of nanoscience and
nanotechnology.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Flexoelectricity refers to the coupling of electric polarization to strain gradients. It has been studied in-depth in liquid
crystals (Meyer, 1969; Harden et al., 2010; Buka and Eber, 2012) and biomembranes (Raphael et al., 2010; Petrov, 2006).
However, in recent years there has been a surge in interest in flexoelectric phenomena in harder materials, such as lead
zirconate titanate (PZT) and other perovskites (Nguyen et al., 2013; Zubko et al., 2013). The primary reason for this de-
velopment is the advent of accurate probes that can detect polarizations and stresses at the nano-scale (Ma and Cross, 2001,
2002; Zubko et al., 2007; Catalan et al., 2011; Chin et al., 2015). Concurrent developments have also taken place in the
theoretical interpretations of the experiments. Atomistic simulations, such as lattice dynamics (Maranganti and Sharma,
2009) and first principles calculation (Hong and Vanderbilt, 2011, 2013) have shed some light on the microscopic origins of
flexoelectric phenomena in solids and given estimates for the magnitude of the flexoelectric constants. On the other hand,
computational methods based on finite elements have been used to study stress and polarization fields in macroscopic
solids (Abdollahi et al., 2014). Recently, we presented analytic solutions to some boundary value problems in flexoelectric
solids in one and two dimensions (Mao and Purohit, 2014). Our goal in this paper is to utilize that framework to describe the
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stress and polarization fields near defects in flexoelectric solids. Defects are the spots where the effects of flexoelectricity are
expected to be prominent due to the large strain gradients in their vicinity. Our analysis will enable better interpretation of
experimental data since most specimens inevitably have defects in them.

Flexoelectricity also offers a simpler alternative explanation to some phenomena that have been discovered before. In the
1960s and 1970s a series of experiments (Koehler et al., 1962; Turchányi et al., 1973; Whitworth, 1975) were performed to
study charged dislocations in cubic crystals, i.e. alkali halides. These solids have centrosymmetric lattices which rule out
piezoelectricity as the cause for the charge carried by dislocations in them, but this symmetry does not rule out flex-
oelectricity. In fact, flexoelectric phenomena can be observed in dielectrics of any symmetry group, including isotropic ones.
We show in this paper that some of the results for charged dislocations can be qualitatively understood in terms of flex-
oelectricity. Charged dislocations were also observed in experiments on ice by Petrenko and co-workers in 1980s (Petrenko
and Whitworth, 1983). They conducted a thorough study of the electromechanical properties of ice and attributed charged
dislocations and other phenomena to a so-called “pseudo-piezoelectricity” (Petrenko and Whitworth, 1999). This phe-
nomenon assumed that the polarization in ice is proportional to the pressure gradient. This is a natural result of what is
known today as flexoelectricity (Mao and Purohit, 2014). Indeed, Petrenko and co-workers studied point defects, disloca-
tions and cracks in ice and arrived at their conclusions about pressure gradient dependent polarization from a microscopic
view point (Petrenko, 1996). We show here that the results from our formulation based on a strain-gradient coupled po-
larization agree quite well with the findings of Petrenko and co-workers.

The study of cracks and other defects in closely related piezoelectric solids has a long history (Kuna, 2010). A primary
motivation for these studies was to better understand damage and failure of piezoelectric devices. In particular, mathe-
matical techniques from linear elastic fracture mechanics (LEFM) were used to find analytic solutions for a variety of crack
problems in piezoelectric solids (Sosa, 1992; Suo et al., 1992; Pak, 1992) which are now referred to as linear piezoelectric
fracture mechanics (LPFM). Parallel experimental studies were also conducted, as summarized in Schneider (2007). It was
realized that both mechanical failure and electric breakdown are responsible for damage in piezoelectric devices due to the
singular nature of the stress and electric fields near a crack tip. For example, an “electric-yielded” zone in ferroelectrics was
proposed (Gao et al., 1997; Wang, 2000), which is analogous to the plastic zone in fracture mechanics. Other important
developments in this field involve treatment of boundary conditions, anisotropy, mode mixing etc., as summarized in Kuna
(2010). All these studies have led to the development of a powerful continuum framework to study electromechanical
effects in cracks. Some insights from this literature are used in our analysis. Also, since strain gradient elasticity (SGE) is an
important ingredient of flexoelectricity, we draw upon the literature on asymptotic solutions of crack tip fields in gradient
elasticity (Zhang et al., 1998; Aravas and Giannakopoulos, 2009).

This paper is organized as follows. First, we construct Green's function for a flexoelectric boundary value problem. We
use it in our studies of point defects and dislocations. Second, we give an analytic solution to the problem of a single point
defect in an isotropic flexoelectric solid. Third, we solve for the polarization fields of screw and edge dislocations and
connect our analysis to various experiments. Fourth, we obtain asymptotic solutions to crack tip fields for Mode I and II
cracks in flexoelectric solids with both conducting and insulating conditions, as well as Mode III, Mode D and Mode E cracks.
We also give solutions for some mixed mode cracks. Finally, we discuss new fracture criteria that could be used for pre-
dicting failure in flexoelectric solids.

2. Flexoelectric Green's function

We consider an isotropic flexoelectric solid in which the displacement field is u x x x, ,k 1 2 3( ), k 1, 2, 3= and the electric
potential is x x x, ,1 2 3φ ( ). Such a solid is characterized by the Lame constants, λ and μ, an SGE length scale l, two flexoelectric
constants f1 and f2 and the dielectric permittivity ϵ. If the deformation and charge separation are sufficiently small then we
can use a linearized theory and derive a Navier-type equation for the displacement field and the electric potential. The
governing equations obtained in Mao and Purohit (2014) are as follows:
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with f f f21 2= + and a 1
0= ϵ − ϵ− , where ϵ0 is the permittivity of vacuum.

Now, let l1i i
2 2= ( − ∇ ), then the flexoelectric Green's function for displacement Gij can be obtained by solving the

following equation:
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