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a b s t r a c t

Ideas from continuum mechanics are used to derive an elastic stability inequality for a
boundary between two different materials under quasi-static, homogeneous conditions.
The terms in this inequality are interpreted for the case of an ideal twinning plane
between two variants of a face-centered cubic material. High quality potentials for Ni and
Cu are used in molecular dynamics calculations to calibrate relevant energies and
displacements near the twinning plane. It is found that in comparison with direct
molecular dynamics calculations the inequality predicts the critical stress that initiates
movement of the twinning plane in Ni within 1.9% and within 1.3% for Cu. Although the
predicted and calculated critical stresses are only upper bounds for the more realistic case
of an imperfect boundary, the calculations give considerable insight into the interplay of
energies that lead to boundary motion.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In face-centered cubic (fcc) metallic materials with nanoscale grain sizes twinning on {111} planes may compete with
dislocations as a mechanism for plastic deformation, e.g., see Zhu et al. (2012). Under sufficient shear traction in favored
directions the twinning plane can move through the crystal lattice, remaining more or less parallel to the original plane. This
is accomplished by atoms in a plane adjacent to the twinning plane that jump from current potential wells into neighboring
wells in their own plane. By doing so, they restore the full fcc symmetry to the starting twinning plane, but cause the plane
of jumping atoms to become the new twinning plane. Thus motion of an fcc twin boundary in its normal direction is a
consequence of atoms jumping laterally to newwells. In general not all parts of the jumping plane move simultaneously, but
rather “ledges,” which are partial dislocations, develop where lattice defects or favorable fluctuations occur, or alternatively
the ledges are emitted from grain boundaries, (Zhu et al., 2012). A ledge can then race across the old twinning plane, leaving
an advancing twinning plane in its wake. Twin boundary motion thus follows the instability of one configuration and the
attempt to find a more favorable configuration. The ledges cause local stress concentrations that move along the twinning
plane under sufficient continued loading.

A homogeneous or ideal twinning plane without preexisting ledges or other defects is a simpler configuration to
understand than one with ledges, etc., but which still gives considerable insight into the initiation of twin boundary motion
and its underlying causation, namely, the interplay of various energies in the neighborhood of the twinning plane. This
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paper will examine only the stability of a single homogeneous twinning plane, which determines the ideal shear strength of
a twin boundary. The more complex issue of stability of a twinning plane with ledges will be left for the future.

To estimate the critical stress (ideal shear strength) that initiates motion of a twinning plane through the crystal lattice
we examine the elastic stability of a preexisting uniform twin boundary using standard continuum concepts, supplemented
by further information from molecular dynamics. First we review the criterion for continuum stability of a small uniformly
loaded volume of a homogeneous material. Next we extend the analysis to two small volumes of different materials, joined
to each other by a flat plane that independently carries energy. The same analysis that yields the volumetric criterion for
stability, now gives an extra condition for stability of the joining plane. In our model problem the two materials are two twin
variants of the same fcc material, joined by the twinning plane, which exists in a hexagonal close packed (hcp) configuration
with respect to the adjacent planes of atoms in each of the fcc twin variants. Under quasi-static shear loading molecular
dynamics can compute the constant state of stress, as well as the energy density in the twinning plane itself and in each
plane parallel to it in the two fcc variants (see Appendix A). This approach also requires an account of displacements in the
neighborhood of the twinning plane prior to instability. Molecular dynamics also supplies this information.

The problem now is to reconcile the continuum description and the information obtained from molecular dynamics.
An elementary argument suggests a simple scaling relation between the critical shearing stress for twinning plane
instability (the start of plane migration) and three elementary physical properties; elastic shear modulus, stacking fault
energy, and spacing between {111} planes. Detailed molecular dynamic (MD) calculations yield reasonably good estimates of
the actual critical stresses. A scatter plot between actual and scaling stresses in several fcc materials verifies the rough
validity of the scaling relation.

MD calculations also provide all the energies and displacements needed to verify and clarify the continuum criterion for
stability; see the Appendix A for a brief description of the computational problem. Although molecular dynamics can
estimate the critical stress for this particular problem, continuum mechanics in tandem with molecular dynamics gives
added depth and insight concerning changes to energetic relationships that would be next to impossible to discern from
molecular dynamics alone.

2. Review of stability for bulk material

A theoretical study of the stability of bulk material has been discussed by Hill and Milstein (1977) and by Milstein and
Hill (1979). Wang et al. (1995) also gave a derivation of the conditions for loss of stability in a uniformly strained
homogeneous crystal and remarked that “The spirit of our analysis here may be compared to a virtual work argument.”
In fact, a virtual work argument, posed here in the conventional language of nonlinear continuum mechanics, verifies that
statement and further clarifies the nature of the possible mechanical instabilities.

Consider a small volume of material that is stress free in an initial configuration, X, and that experiences uniform, static
stresses and deformations in an equilibrated configuration given by x Xð Þ (Refer to Fig. 1). The constant deformation gradient
is given by F ¼ ∂x=∂X, and the constant Cauchy stress is denoted by t. Next imagine that the small volume of material is
deformed further to a neighboring equilibrium configuration given by y¼ y Xð Þ. The additional small displacement is
denoted δu¼ y�x, the deformation gradient is FþδF ¼ ∂y=∂X, and consequently δF ¼ ∂ δu

� �
=∂X. The Green strain is

E¼ 1
2 ðFTF�IÞ, and to first order the strain increment is δE¼ 1

2 ðδFTFþFTδFÞ ¼ 1
2 ½f δu

� �
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� �
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∂ðδuÞ=∂X or ∂ δui
� �

=∂Xα; i¼ 1;2;3 ;…; α¼ 1;2;…. The increment of strain relative to the deformed configuration then is

defined as δe¼ F �TδEF �1, or in Cartesian coordinates this increment of strain is given by the familiar expression
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1
2

∂ δui
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: ð1Þ

The stress measure that is work conjugate to the Green strain is the symmetric Piola–Kirchoff stress, T. If the Helmholz
energy per unit mass is given by ψ E; Tð Þ, where T is temperature (considered to be constant from here on), then

T ¼ ρ0
∂ψ
∂E

: ð2Þ

Fig. 1. The geometry of finite elastic deformation with an additional incremental deformation.
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