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a b s t r a c t

We review the theoretical bounds on the effective properties of linear elastic inhomoge-
neous solids (including composite materials) in the presence of constituents having non-
positive-definite elastic moduli (so-called negative-stiffness phases). Using arguments of
Hill and Koiter, we show that for statically stable bodies the classical displacement-based
variational principles for Dirichlet and Neumann boundary problems hold but that the
dual variational principle for traction boundary problems does not apply. We illustrate our
findings by the example of a coated spherical inclusion whose stability conditions are
obtained from the variational principles. We further show that the classical Voigt upper
bound on the linear elastic moduli in multi-phase inhomogeneous bodies and composites
applies and that it imposes a stability condition: overall stability requires that the effective
moduli do not surpass the Voigt upper bound. This particularly implies that, while the
geometric constraints among constituents in a composite can stabilize negative-stiffness
phases, the stabilization is insufficient to allow for extreme overall static elastic moduli
(exceeding those of the constituents). Stronger bounds on the effective elastic moduli of
isotropic composites can be obtained from the Hashin–Shtrikman variational inequalities,
which are also shown to hold in the presence of negative stiffness.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The overall or effective properties of heterogeneous solids are uniquely linked to the properties of each composite
constituent, their geometric arrangement and bonding. Owing to microstructural randomness in the arrangement of
composite phases, effective physical properties in most cases cannot be determined exactly. One approach is to estimate
them by the aid of rigorous upper and lower bounds. The simplest such bounds were introduced by Hill (1952) and Paul
(1960): the Reuss and Voigt bounds are solely based on phase volume fractions and present upper and lower bounds on the
effective linear elastic moduli of multi-phase composites. For inhomogeneous bodies the analogous bounds were obtained
by Nemat-Nasser and Hori (1993) and by Willis in a 1989 private communication to Nemat-Nasser and Hori. Based on
variational principles and the introduction of a polarization field, Hashin and Shtrikman (1963) derived new tighter bounds
for isotropic well-ordered two-phase composites with bulk moduli κ24κ1 and shear moduli μ24μ1. Their bounds on the
effective bulk modulus can be attained e.g. by assemblages of coated spheres (interchanging the materials in spherical
inclusions and coatings yields upper and lower bounds on the effective bulk modulus). Similarly, hierarchical laminate
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constructions have been shown to attain the bounds on the effective shear modulus (Norris, 1985; Milton, 1986; Francfort
and Murat, 1986). Therefore, the bounds of Hashin and Shtrikman (1963) are optimal and present the strongest possible
restrictions on the elastic moduli of well-ordered multi-phase solids based only on volume fractions. For non-well-ordered
isotropic two-phase composites (with bulk moduli κ24κ1 and shear moduli μ2oμ1) the tightest known bounds on the
effective bulk modulus are those of Hill (1963a), and are attained by coated-sphere assemblages, and on the effective shear
modulus are those of Milton and Phan-Thien (1982), which improve upon those of Walpole (1966) and are attained in
certain parameter regimes where they coincide with the Hashin–Shtrikman formulae. By including statistical micro-
structural information of random composites, three-point bounds were derived e.g. by Beran and Molyneux (1966) and
McCoy (1970), who used classical variational principles. For two-phase composites these bounds were simplified by Milton
(1981). By improving McCoy's bounds, Milton and Phan-Thien (1982) found stronger restrictions for the effective shear
modulus. We refer to Cherkaev (2000), Torquato (2002), Allaire (2002), Milton (2002) and Tartar (2010) for comprehensive
reviews of composite bounds. Alternatively, estimates of effective composite properties have been established by an
effective medium strategy, which has resulted in, among others, the self-consistent method (Hill, 1965; Budiansky, 1965;
Berryman, 1980) and its generalized form (Christensen and Lo, 1979), the differential (Roscoe, 1952, 1973; Norris, 1985) and
Mori–Tanaka schemes (Mori and Tanaka, 1973; Benveniste, 1987). Although beyond the scope of the present investigation,
we note that nonlinear variational bounds on composite properties are available as well, see e.g. Talbot and Willis (1985),
Ponte Castaneda (1991) and Castaneda and Willis (1999).

All of the aforementioned bounds imply that the effective linear elastic moduli of composites (in particular the Young,
bulk, and shear moduli of isotropic composites) are bounded from above by the individual moduli of the constituent
materials; i.e. no composite can be stiffer than its stiffest constituent. This prohibits the creation of new composites with
extreme properties (where by ‘extreme’ we refer to properties which exceed those of the constituents). However, the
derivation of those bounds assume that all constituent materials possess positive-definite elastic moduli (for the specific
case of isotropic solids, this is equivalent to requiring Young, bulk and shear moduli to be positive). Lakes and Drugan (2002)
showed that relaxing this assumption by allowing for non-positive-definite elastic moduli (so-called negative stiffness) in
one of the phases in an inhomogeneous body may lead to extreme effective stiffness. Based on exact solutions for a coated-
sphere two-phase solid, they showed that a two-phase inhomogeneous body can, in principle (within the validity of the
elasticity model), attain unbounded effective bulk stiffness if the constituent moduli and volume fractions are appropriately
tuned. Lakes and coworkers demonstrated that various other effective physical composite properties promise to reach
extreme values when including a negative-stiffness phase (Lakes, 2001a, 2001b; Wang and Lakes, 2001, 2004, 2005).
Experimentally, negative stiffness has been realized by constituents undergoing microscale instabilities such as phase
transitions, see e.g. Lakes et al. (2001), Jaglinski et al. (2006), Jaglinski and Lakes (2007), and Jaglinski et al. (2007). Similarly,
on a structural level the negative-stiffness effect has been realized by buckling instabilities, see e.g. Moore et al. (2006), Lee
et al. (2007), Lee and Goverdovskiy (2012), and Kashdan et al. (2012).

While negative stiffness is generally unstable in homogeneous solids with mixed or pure-traction boundary conditions
(Kirchhoff, 1859), it was shown that negative-stiffness phases can be stabilized when geometrically constrained e.g. by a
sufficiently stiff and thick coating or as inclusions in a stiff matrix (Drugan, 2007; Kochmann and Drugan, 2009, 2012;
Kochmann, 2012). Unfortunately, the thus expanded stability regime is insufficient to stabilize extreme effective static
stiffness in simple two-phase solids and in isotropic two-phase composites with equal shear moduli (Wojnar and
Kochmann, 2014b, 2014a), while allowing for interesting dynamic phenomena.

Instead of investigating particular composite geometries, here we show that arbitrary linear elastic inhomogeneous
bodies and multi-phase composites cannot reach extreme stiffness by the inclusion of negative-stiffness phases if they are to
be statically stable. To this end, we first review the classical variational principles in Section 2 and determine their validity in
the presence of negative-stiffness phases. We illustrate the applicability or non-applicability of the various variational
principles in Appendix B by the example of a coated spherical inclusion. Next, in Section 3 we apply the variational
principles to show that the classical Voigt upper bound applies and, most importantly, implies a stability condition: overall
stability requires that the effective moduli must not surpass the Voigt upper bound. We further show that the Hashin–
Shtrikman variational inequalities apply and that they yield additional upper and lower bounds on the effective elastic
moduli of isotropic composites. Our results particularly demonstrate that extreme effective (static) elastic moduli exceeding
those of any of the constituents are prohibited if the solid is to be statically stable. We further review three-point bounds on
the effective moduli and conclude upper and lower bounds in the presence of negative-stiffness phases. Finally, Section 4
concludes our analysis.

2. Variational principles for heterogeneous solids

We consider an inhomogeneous bodyΩ containing a composite material made of elastic constituents and experiencing a
displacement field uðx; tÞ with xARd denoting position in d-dimensional space and t being time. The body is subject to
essential boundary conditions uðxÞ ¼ vðxÞ on the subset ∂Ωu of the body's boundary ∂Ω and natural boundary conditions
tðxÞ ¼ t0ðxÞ on ∂Ωt . Here, tðxÞ ¼ σðxÞnðxÞ denotes the traction vector on a surface with unit outward normal nðxÞ, and σðxÞ is
the infinitesimal symmetric stress tensor. Furthermore, we have ∂Ωu [ ∂Ωt ¼ ∂Ω and ∂Ωu \ ∂Ωt ¼ |. Assume that ~uðxÞ is the
displacement field corresponding to a solution of the elasticity equation (linear momentum balance) which satisfies the
above boundary conditions, i.e. ~uðxÞ characterizes an equilibrium configuration of the body. The arguments of Hill (1957)

D.M. Kochmann, G.W. Milton / J. Mech. Phys. Solids 71 (2014) 46–63 47



Download English Version:

https://daneshyari.com/en/article/7178190

Download Persian Version:

https://daneshyari.com/article/7178190

Daneshyari.com

https://daneshyari.com/en/article/7178190
https://daneshyari.com/article/7178190
https://daneshyari.com

