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a b s t r a c t

This study concerns the derivation of the coupled peridynamic (PD) thermomechanics
equations based on thermodynamic considerations. The generalized peridynamic model
for fully coupled thermomechanics is derived using the conservation of energy and the
free-energy function. Subsequently, the bond-based coupled PD thermomechanics equa-
tions are obtained by reducing the generalized formulation. These equations are also cast
into their nondimensional forms. After describing the numerical solution scheme,
solutions to certain coupled thermomechanical problems with known previous solutions
are presented.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Thermomechanics concerns the influence of the thermal state of a solid body on the deformation and the influence of the
deformation on the thermal state. In many cases, the effect of the deformation field on the thermal state may be ignored.
This leads to a decoupled or uncoupled thermomechanical analysis, for which only the effect of the temperature field on the
deformation is present. However, the uncoupled thermomechanics may not be satisfactory for certain transient problems.
Experimental verification of the influence of the deformation on the thermal state exists (Thomson, 1853; Stanley, 2008).
It was shown that an adiabatic solid experiences a temperature drop when it is strained in tension (Chadwick, 1960; Fung,
1965). Also, elastic bodies under tensile loading experience cooling below the yield stress; however, beyond the yield stress
the bodies heat up due to the irreversible nature of plasticity (Nowinski, 1978).

Also, the temperature field induced by structural loading may not be uniform. For example, when a beamwith an initially
uniform temperature is under bending, part of the beam is in tension while the other part is in compression. Due to the
thermomechanical coupling, the part of the beam that is in tension cools and the region that is in compression heats up,
establishing a thermal gradient. This leads to the onset of heat diffusion. The heat flow is irreversible; thus, some of the
mechanical energy supplied to bend the beam is dissipated through its conversion to heat energy. This phenomenon is
called thermoelastic damping and it plays a critical role in vibrations and wave propagation.

It is well known that during fracture in metals a plastic region, in which the material has locally yielded, occurs ahead of
the crack tip. As a result, the mechanical energy is dissipated as heat and the temperature rises in the local region ahead of
the crack tip. A slightly different phenomenon is observed for fracture in polymers. During fracture in polymers, it was
experimentally observed that thermoelastic cooling is followed by a temperature rise due to the plastic zone and/or fracture
process itself which exposes new surfaces (Rittel, 1998). Consequently, in order to accurately model fracture, especially the
crack tip, thermal consideration needs to be taken into account and a coupled thermomechanical analysis becomes
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necessary. The thermal and structural interaction becomes especially important for high-speed impact and penetration
fracture problems (Brünig et al., 2011).

The derivation of the classical thermomechanics equation from a thermodynamic perspective did not occur till the mid
1950s (Biot, 1956). Biot used generalized irreversible thermodynamics to formulate the classical thermomechanical laws in
variational form, with the corresponding Euler equations representing the coupled momentum and energy equations.

The fully coupled thermomechanical equations based on the classical theory are well established. The classical equations
of thermoelasticity are comprised of the deformation equation of motion with a thermoelastic constitutive law and the heat
transfer equation with a structural (or deformational) heating and cooling term contributing to the thermal energy. For
isotropic materials, the thermoelastic constitutive law includes the thermal stresses, which are related to the temperature
gradient, while the structural heating and cooling are dependent on the thermal modulus and rate of dilatation. Depending
on the structural idealization, the thermal modulus is defined as

βcl ¼ ð3λþ2μÞα¼ Eα
1�2ν

for three dimensions ð1aÞ

βcl ¼ ð2λþ2μÞα¼ Eα
ð1�νÞ for two dimensions; ð1bÞ

βcl ¼ ð2μÞα¼ Eα for one dimension; ð1cÞ
in which E is the elastic modulus, α is the coefficient of thermal expansion, and ν is the Poisson's ratio. The parameters λ and
μ are Lamé's constants.

Typically, the strength of coupling is measured via the nondimensional quantity known as the coupling coefficient and
defined as

ϵ¼ βcl
2Θ0

ρcvðλþ2μÞ ; ð2Þ

for which ρ is the mass density, cv is the specific heat capacity, and Θ0 is the reference temperature at which the stress in the
body is zero (Nowinski, 1978). The presence of coupling makes the computational solution significantly complicated. If the
coupling coefficient, Eq. (2) is small compared to unity, the presence of coupling may be disregarded. The coupling
coefficients for metals are significantly lower than those of plastics. Steel, for example, has a coupling coefficient of about
0.011 while certain plastics have a value of ϵ¼ 0:43.

2. Local theory

Various researchers analytically examined plane waves in thermoelastic solids (Chadwick and Sneddon, 1958;
Deresiewicz, 1957). In a one-dimensional formulation, they showed that the presence of thermal and elastic waves, which
are dispersed and attenuated. They also studied the effect of frequency on the phase velocity, attenuation, and damping.
Later, Chadwick (1962) extended the analysis to two dimensions and investigated the propagation of thermoelastic waves in
thin plates. Paria (1958) determined the temperature and stress distribution of a two-dimensional half-space problem using
Laplace and Hankel transforms. Laplace transforms have also been used by Boley and Hetnarski (1968) to characterize
propagating discontinuities in various one-dimensional coupled thermoelastic problems. Fourier transforms were employed
by Boley and Tolins (1962) to determine the mechanical and thermal response of a one-dimensional semi-infinite bar with
transient boundary conditions. The major challenge with transform methods is in finding the analytical inverse transforms—
in many cases this is not possible and numerical inversion is necessary. Other analytical solution methods have been
adopted to solve coupled thermoelastic problems. Soler and Brull (1965) used perturbation techniques and more recently
Lychev et al. (2010) determined a closed-form solution by an expansion of the eigenfunctions generated by the coupled
equations of motion and heat conduction.

Numerical approximations to the classical thermoelastic equations have been very commonly found using the finite
element (FE) method. A transient thermoelastic FE model was developed by Nickell and Sackman (1968) and Ting and Chen
(1982). The approximations from their FE model were compared against analytical solutions for various one-dimensional
semi-infinite problems. Oden (1969) and Givoli and Rand (1995) developed dynamic thermoelastic FE models. Additionally,
Chen and Weng (1988, 1989a, 1989b) modeled various thermoelastic problems such as the transient response of an
axisymmetric infinite cylinder and an infinitely long plate using a finite element formulation in the Laplace transform
domain. Hosseini-Tehrani and Eslami (2000) presented solutions for thermal and mechanical shocks in a finite domain
based on the boundary element method (BEM) in conjunction with the Laplace-transform method in a time domain. They
provided results for small time durations (early stages of the shock loads) using the numerical inversion of the Laplace-
transform method.

Numerical solution schemes for thermomechanical problems are divided into two categories—monolithic schemes and
staggered schemes. In monolithic schemes, the differential equations for different variables are solved simultaneously. On
the other hand, for staggered or partitioned schemes, the solutions of the different variables are determined separately. In
general, the staggered schemes have been favored over monolithic schemes, as the monolithic systems can be very large,
making it unfeasible to solve practical problems. In addition, the mechanical and thermal parts of a thermomechanical
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