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ABSTRACT

A microscopic field theory is developed with the aim of describing, explaining, and
predicting the macroscopic response of elastic dielectric composites with two-phase
particulate (periodic or random) microstructures under arbitrarily large deformations and
electric fields. The central idea rests on the construction — via an iterated homogenization
technique in finite electroelastostatics — of a specific but yet fairly general class of
particulate microstructures which allow to compute exactly the homogenized response of
the resulting composite materials. The theory is applicable to any choice of elastic
dielectric behaviors (with possibly even or odd electroelastic coupling) for the underlying
matrix and particles, and any choice of the one- and two-point correlation functions
describing the microstructure. In spite of accounting for fine microscopic information, the
required calculations amount to solving tractable first-order nonlinear (Hamilton-Jacobi-
type) partial differential equations.

As a first application of the theory, explicit results are worked out for the basic case of
ideal elastic dielectrics filled with initially spherical particles that are distributed either
isotropically or in chain-like formations and that are ideal elastic dielectrics themselves.
The effects that the permittivity, stiffness, volume fraction, and spatial distribution of the
particles have on the overall electrostrictive deformation (induced by the application of a
uniaxial electric field) of the composite are discussed in detail.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Following their discovery in the 19th century (see, e.g., the historical review by Cady, 1946), deformable dielectrics have
progressively enabled a wide variety of technologies. This has been particularly true for “hard” deformable dielectrics such
as piezoelectrics (Uchino, 1997). Modern advances in organic materials have revealed that “soft” deformable dielectrics too
hold tremendous potential to enable emerging technologies (Bar-Cohen, 2001; Carpi and Smela, 2009). At present, however,
a major obstacle hindering the use of these soft active materials in actual devices is that they require — due to their inherent
low permittivity — extremely high electric fields ( > 100 MV/m) to be actuated. Recent experiments have demonstrated that
a promising solution to circumvent this limitation is to make composite materials, essentially by adding high-permittivity
particles to the soft low-permittivity dielectrics (see, e.g., Zhang et al., 2002, 2007; Huang et al., 2005). Making composites
out of hard deformable dielectrics has also proved increasingly beneficial for a broad range of applications (see, e.g.,
Akdogan et al., 2005). In this context, the objective of this work is to develop a microscopic field theory to describe, explain,
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and predict the macroscopic behavior of deformable dielectric composites directly in terms of their microscopic behavior.
Motivated by the above-referenced experimental observations, the focus shall be on finite electroelastic deformations of
composites with two-phase particulate microstructures.

To put the problem at hand in perspective, we recall that a complete macroscopic or phenomenological theory describing
the quasistatic electromechanical behavior of elastic dielectrics has been available since the foundational paper of Toupin
(1956) in the 1950s. Motivated by the renewed interest in electroactive materials of the last 15 years, this theory has been
reformulated and presented in a variety of more convenient forms by a number of researchers including Dorfmann and
Ogden (2005), McMeeking and Landis (2005), Vu and Steinmann (2007), Fosdick and Tang (2007), Xiao and Bhattacharya
(2008), Suo et al. (2008). By contrast, microscopic or homogenization theories — needed to deal with composite materials —
have not been pursued to nearly the same extent. Among the few results available, there are the well-established linear
results for piezoelectric composites (see, e.g., Milton, 2002 and references therein) and the nonlinear result for
electrostrictive composites of Tian et al. (2012), both within the restricted context of small deformations and small electric
fields. Within the general context of finite deformations and finite electric fields, the only explicit results available in the
literature appear to be those of deBotton et al. (2007) for the overall electrostrictive response of two-phase laminates; see
also the finite element results of Li and Landis (2012). There is also the more recent work of Ponte Castafneda and Siboni
(2012) wherein a decoupling approximation is proposed to model a special class of elastic dielectrics filled with
mechanically rigid particles.

We begin this work in Section 2 by formulating the electroelastostatics problem defining the macroscopic response of
two-phase elastic dielectric particulate composites under arbitrarily large deformations and electric fields. By means of an
iterated homogenization procedure, we construct in Section 3 a solution for this problem for a specific but yet fairly general
class of two-phase particulate (periodic or random) microstructures. This solution — given implicitly by the first-order
nonlinear partial differential equation (35)-(36) and described in detail in Section 3.3 — constitutes the main result of this
paper. It is valid for any choice of elastic dielectric behaviors for the matrix and particles, and any choice of one- and two-
point correlation functions describing the underlying microstructure. For demonstration purposes, we spell out in Section 4
its specialization to the case when the matrix material is an ideal elastic dielectric. This result is further specialized in
Section 4.1 to the case when the particles are ideal elastic dielectrics themselves, initially spherical in shape and distributed
either isotropically (Section 4.1.1) or in chain-like formations (Section 4.1.2). In Section 5, we present sample results for the
overall electrostrictive deformation that these particle-filled ideal dielectrics undergo when they are exposed to a uniaxial
electric field. The aim there is to shed light on how the presence of filler particles — in terms of their elastic dielectric
properties, volume fraction, and spatial distribution — affect the electrostrictive performance of deformable dielectrics.
Finally, we provide in A, B, and C further details regarding the microscopic field theory developed in Section 3, including
how it can be utilized to extract information on local fields; knowledge of local fields is of the essence, for instance, to probe
the onset of electromechanical instabilities such as cavitation and electric breakdown.

2. Problem formulation

Microscopic description of the material. Consider a heterogeneous material comprising a continuous matrix filled by a
statistically uniform (i.e., translation invariant) distribution of firmly bonded particles that occupies a domain £,, with
boundary 09y, in its undeformed stress-free configuration. The matrix is labeled as phase r=1, while the particles are
collectively labeled as phase r=2. The domains occupied by each individual phase are denoted by Qg” and ng), so that
Qo =0" U @ and their respective volume fractions are given by ¢\’ = || /|2| and ¢’ = |2|/I2|. We assume that the
characteristic size of the particles is much smaller than the size of £, and, for convenience, choose units of length so that £,
has unit volume.

Material points are identified by their initial position vector X in 24 relative to some fixed point. Upon the application of
mechanical and electrical stimuli, the position vector X of a material point moves to a new position specified by x = y(X),
where y is a one-to-one mapping from €, to the deformed configuration ©. We assume that y is twice continuously
differentiable, except possibly on the particles/matrix boundaries. The associated deformation gradient is denoted by
F = Grad y and its determinant by J =det F.

Both the matrix (r=1) and the particles (r=2) are elastic dielectrics. We find it convenient to characterize their

constitutive behaviors in a Lagrangian formulation by “total” free energies W (suitably amended to include contributions
from the Maxwell stress) per unit undeformed volume, as introduced by Dorfmann and Ogden (2005). In this work, such
energy functions are assumed to be objective, differentiable, and, for definiteness, we shall use the deformation gradient F
and Lagrangian electric field E as the independent variables'. It then follows that the first Piola-Kirchhoff stress tensor S and
Lagrangian electric displacement D are given in terms of F and E simply by

w

oW
s=2F(XEE) and D=-"E(XEB) 1)

1 For our purposes here, it is equally convenient to use the Lagrangian electric displacement D as the electric independent variable instead of E. For
completeness, Appendix C includes a summary of results based on this alternative variable.
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