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a b s t r a c t

We present a new auxiliary problem for the determination of the apparent stiffness of a
Statistical Volume Element (SVE). The SVE is embedded in an infinite, homogeneous
reference medium, subjected to a uniform strain at infinity, while tractions are applied to
the boundary of the SVE to ensure that the imposed strain at infinity coincides with the
average strain over the SVE. The main asset of this new auxiliary problem resides in the
fact that the associated Lippmann–Schwinger equation involves without approximation
the Green operator for strains of the infinite body, which is translation-invariant and has
very simple, closed-form expressions. Besides, an energy principle of the Hashin and
Shtrikman type can be derived from this modified Lippmann–Schwinger equation,
allowing for the computation of rigorous bounds on the apparent stiffness. The new
auxiliary problem requires a cautious mathematical analysis, because it is formulated in
an unbounded domain. Observing that the displacement is irrelevant for homogenization
purposes, we show that selecting the strain as main unknown greatly eases this analysis.
Finally, it is shown that the apparent stiffness defined through these new boundary
conditions “interpolates” between the apparent stiffnesses defined through static and
kinematic uniform boundary conditions, which casts a new light on these two types of
boundary conditions.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The determination of the macroscopic properties of heterogeneous materials can be carried out by means of
micromechanical models such as the model of Mori and Tanaka (1973) (see also Benveniste, 1987; Ponte Castañeda and
Willis, 1995), the model of Maxwell (McCartney and Kelly, 2008; McCartney, 2010), the self-consistent model (Walpole,
1969; Kröner, 1977) or the generalized self-consistent model (Christensen and Lo, 1979; Hervé and Zaoui, 1993). These are
invaluable tools, which provide semi-analytical (or even closed-form) estimates; besides, material non-linearities can be
accommodated (Suquet, 1997). However, it is well-known that they fail to account for the finest details of the
microstructure. This is due to the fact that most of them are based on the elementary solution to the problem of one
single inhomogeneity, embedded in an infinite, homogeneous matrix (Eshelby, 1957). Since the inhomogeneity under
consideration in this auxiliary problem is isolated, microstructural correlations can only be approximately incorporated.
In cases where a more faithful representation of the microstructure is needed, it is therefore essential to resort to numerical
homogenization, which provides accurate estimates derived from full-field computations.
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Within the framework of numerical homogenization, the effective stiffness of heterogeneous materials is usually
estimated as the limit of the apparent stiffness of Statistical Volume Elements (SVEs, using the terminology introduced by
Ostoja-Starzewski, 2006) of growing size (Sab, 1992). In turn, the apparent stiffness is derived from the solution to an
auxiliary boundary value problem which states the elastic equilibrium of the SVE. The present paper is devoted to the issue
of selecting appropriate boundary conditions for this auxiliary problem. Three types of boundary conditions are frequently
adopted, namely static and kinematic uniform boundary conditions (Hill, 1963, 1967; Mandel, 1972), and periodic boundary
conditions (Gusev, 1997, among others).

In the case of linear elasticity and kinematic uniform boundary conditions, the Lippmann–Schwinger equation is an
alternative (equivalent) formulation of the auxiliary problem (Zeller and Dederichs, 1973). Upon introduction of a so-called
reference medium, the classical boundary value problem of elasticity with the displacement as main unknown is replaced
with a unique integral equation with the polarization as main unknown.

In comparison with the initial boundary value problem, the equivalent integral equation has a number of assets, both in
periodic and random homogenization. In periodic homogenization, for example, the structure of the equation lends itself to
efficient numerical treatments in the Fourier space (Moulinec and Suquet, 1994, 1998; Brisard and Dormieux, 2010, 2012).
The resulting schemes can be extended to non-linear problems (Michel et al., 2001). In the present paper, periodic boundary
conditions are not adopted, and discretization of the Lippmann–Schwinger equation can no longer benefit from
formulations in the Fourier space. However, discretization of this equation in the real space can still be carried out in an
efficient way under certain circumstances. This is true of e.g. randommatrix–inclusions composites. Indeed, the polarization
in the matrix vanishes if the latter is selected as reference medium. Then, the polarization needs only to be approximated in
the inclusions (by e.g. piecewise polynomials), which results in a significant reduction of the number of degrees of freedom.
This is the basis of the Equivalent Inclusion Method (Moschovidis and Mura, 1975), a variational version of which will be
proposed by the authors in a future publication.

Solving numerically the auxiliary problem with kinematic uniform boundary conditions would require the discretization
of a Lippmann–Schwinger equation involving the Green operator for strains of a bounded domain. Such an approach has two
shortcomings. First, this operator is known for very specific shapes of the bounded domain only. Second, it is not
translation-invariant; as a consequence, the influence pseudo-tensors, which characterize the interaction between two
inclusions, would depend on the position of both inclusions. This would result in a costly assembly of the linear system
resulting from the discretization of the Lippmann–Schwinger equation.

To overcome these shortcomings, it is necessary to substitute the Green operator of the infinite domain (whole space) to
the Green operator of finite domains. This substitution effectively amounts to embedding the SVE in an infinite medium,
with imposed strain at infinity (see Fig. 3). The Equivalent Inclusion Method is in fact formulated in this spirit. Since the
Green operator of the infinite domain is translation-invariant, the influence pseudo-tensors of two inclusions depend on
their relative position only, thus easing assembly of the underlying linear system.

However, the resulting Lippmann–Schwinger equation is not well-suited to numerical homogenization, as the
corresponding boundary conditions do not allow for the specification of neither the macroscopic strain nor the macroscopic
stress. Although it is still possible to define the apparent stiffness associated with these boundary conditions (see Fond et al.,
2002 and Section 3.2 in the present paper), the resulting estimates cannot be regarded as bounds, as the principle of Hashin
and Shtrikman is lost.

In the present paper, we introduce a new auxiliary problem, with mixed boundary conditions, and the associated
modified Lippmann–Schwinger equation, which involves the Green operator of the infinite domain. As previously suggested
by Willis (1977), this operator is applied to the fluctuations of the polarization. However, Willis regarded the resulting
integral equation as an approximation of the Lippmann–Schwinger equation associated to kinematic uniform boundary
conditions for infinitely large SVEs. By contrast, in this paper, we regard this equation as the exact Lippmann–Schwinger
equation associated to the new, mixed boundary conditions, combining imposed strain at infinity and imposed tractions at
the boundary of the finite-size SVE (see Fig. 2).

This new auxiliary problem with mixed boundary conditions has a number of assets. First, the loading parameter is the
macroscopic strain (unlike the problem depicted in Fig. 3). This results in a direct definition of the corresponding apparent
stiffness; it differs from the apparent stiffness based on static or kinematic uniform boundary conditions. Second, minimum
potential and complementary energy principles can be derived, which in turn allow for the mathematical analysis of the
well-posedness of the new auxiliary problem, as well as the elementary properties of the apparent stiffness. Third, an
energy principle of the Hashin and Shtrikman (1962a) type can be derived; under classical restrictions on the stiffness of the
reference medium, it is therefore possible to exhibit bounds on the apparent stiffness. As the underlying Green operator is
translation-invariant, this energy principle lends itself to direct discretization in a numerical setting. Finally, the new
definition of the apparent stiffness “interpolates” between the two classical definitions based on static and kinematic
uniform boundary conditions. Indeed, when the reference (embedding) medium becomes infinitely soft (resp. stiff), the
apparent stiffness associated with static (resp. kinematic) uniform boundary conditions is recovered. For finite stiffness
reference media, the apparent stiffness associated with mixed boundary conditions is bounded by these two limit apparent
stiffnesses.

The remainder of this paper is organized as follows. In Section 2, the definitions of static and kinematic uniform
boundary conditions are first recalled. Then, the new, mixed boundary conditions are introduced. The mathematical
properties of the resulting auxiliary problem, and the associated apparent stiffness are stated without proof. The essential
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