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A B S T R A C T

Capture of the discrete nature of crystalline solids for the purpose of the determination of their mechanical
behavior with high precision is of interest. To achieve this objective, two fundamental contributing factors are on
top of the list: (1) formulation in the mathematical framework of an appropriate higher order continuum theory
rather than using classical treatment, and (2) incorporation of the true anisotropy of the media. The present work
revisits Toupin–Mindlin first strain gradient theory for media with general anisotropy, and then specialize it to
cubic crystals of hexoctahedral class. This formulation in addition to 3 classical material constants encountered
in classical theory of elasticity, gives rise to 11 additional material parameters peculiar to first strain gradient
theory. To date, there is no experimental method in the literature for the measurement of these parameters. A
methodology incorporating lattice dynamics is proposed, by which all the material parameters including the
classic ones are analytically expressed in terms of the atomic force constants. Subsequently, the analytical ex-
pressions for the nonzero components of the 4th and 6th order elastic moduli tensors as well as 6 characteristic
lengths are derived. Finally, with the aid of ab initio calculations all the material properties in Toupin–Mindlin
first strain gradient theory are numerically obtained with high precision. In this work the transformation ma-
trices of cubic crystals of diploidal class which also falls under centrosymmetric point groups are discussed as
well.

1. Introduction

Design and fabrication of miniature structures, micro- and nano-
objects with a desired precision require the incorporation of appro-
priate highly accurate analysis. It is well-known that, the accuracy of
classical continuum theory of elasticity for describing the mechanical
behavior of nano-sized structures is insufficient. Moreover, not only its
accuracy in the vicinity of the nanoscopic defects deteriorates, but also
it is incapable of capturing the size effect of such nono-sized embedded
second phase as nano-inhomogeneities and nano-voids. The desire to
increase the accuracy of solution through accounting for the discrete
nature of matters, turned the attention of some prominent investigators,
primarily in the period of about 1960–1975, towards the development
of various higher order continuum theories. Despite the fact that such
theories, due to their ability to remedy the aforementioned dilemmas,
are nowadays in the spotlight, some serious challenges as how to obtain
the associated material properties are posed. Herein, we mainly focus

on first strain gradient theory for cubic crystals of hexoctahedral class
and calculate, in this mathematical framework, all the pertinent ma-
terial parameters and the components of the elastic moduli tensors.

The first generalization of the classical theory goes back to the
nineteenth century. Voigt (1887, 1894) was the first to note that on
each face of a differential volume element inside a body, in addition to
the action of 3 stress components, there are also 3 moment vectors.
Although Voigt’s works being the pioneer of this theory, the first
comprehensive theory was later presented by Cosserat and
Cosserat (1909). In their proposed theory, they assumed that each
point, in addition to the 3 translational degrees of freedom considered
in classical theory of elasticity, possesses 3 rotational degrees of
freedom as well. Appearance of couple stresses in the equations of
motion within Cosserat media is a manifestation of consideration of the
additional degrees of freedom. In contrast to classical theory of elasti-
city, it turns out that the pertinent stress tensor for Cosserat media is not
symmetric. From a different point of view, each point of a Cosserat
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medium has the degrees of freedom of a rigid body. The orientation of
any such point is mathematically representable by the values of a set of
3 orthogonal unit vectors, referred to as “directors” of an “oriented
medium” by Ericksen and Truesdell (1957). More generally, if the di-
rectors are stretchable and are not restricted to remain mutually or-
thogonal, then the theory leads to the mechanics of elastic oriented
media with “microstructure”, considered by Mindlin (1964) for linear
elasticity. Toupin (1964) noted that in Cosserat continuum theory, if
the rotation of a point is set equal to the local rotation of the medium,
then the theory collapses to the couple stress theory of Toupin (1962);
Mindlin and Tiersten (1962); Grioli (1960). This theory is also known as
“Cosserat theory with constrained rotation”, which is a subclass of a
more general theory for non-simple materials of grade 2. A material is
referred to as “grade N” if the order of the highest position gradient in
its energy density function expression is equal to N. For such materials,
Toupin (1964) expressed the strain energy density function in terms of
6 components of the strain tensor and 18 components of the first gra-
dient of strain tensor. Toupin’s formulation was developed for nonlinear
elasticity. The linear version of the theory was presented by
Mindlin (1964) in three forms and later elaborately by Mindlin and
Eshel (1968) but limited to isotropic media. In the latter work which is
developed for isotropic materials, in addition to the usual Lamé con-
stants, λ and μ, gives rise to 5 additional constants and 2 characteristic
lengths. Theory of grade 2 materials in Toupin (1964) is referred to as
the first strain gradient theory in Mindlin and Eshel (1968). With due
attention to the contributions of Toupin (1964); Mindlin (1964), here-
after, theory of grade 2 materials is referred to as “Toupin–Mindlin first
strain gradient theory”. As it was alluded to, such higher order con-
tinuum theories as first strain gradient theory are necessary for a highly
accurate analysis near defects and capture of size effect. However, in
utilizing these theories, some difficulties arise due to the lack of
knowledge about the material properties as well as the challenges for
obtaining them. The complication in obtaining all the material para-
meters worsens if the actual crystal symmetries are appropriately ac-
counted for.

Although, the simplistic assumption of isotropy for the behavior of
the existing elements is merely for the convenience of carrying out an
analytical solution, for certain problems but not always has led to useful
estimates of the actual model. If the principle feature of interest is to
capture the effect of the discrete nature of matter with high precision,
such a simplistic assumption is not reliable and, hence, accounting for
the complete symmetry group of the element of interest is inevitable.
The matrix representation of first strain gradient theory for different
elastic symmetries was given by Auffray et al. (2013). The main ob-
jective of this work is to develop a remedy for the computation of all the
material parameters of the cubic crystals of hexoctahedral class that are
realized in the mathematical framework of first strain gradient theory.
In contrast to the work in Mindlin and Eshel (1968) which has for-
mulated first strain gradient theory for isotropic media, the present
work first extends it to general anisotropy, and then simplify the for-
mulation for the case of cubic crystals of hexoctahedral class. It will be
shown that, the current formulation falling in this symmetry group
results in 3 classical constants and 11 additional material parameters, as
oppose to the treatment of Mindlin and Eshel (1968) in which 2 Lamé
constants and 5 additional material parameters are involved. The cur-
rent work gives rise to 6 characteristic lengths in terms of the classical
and additional parameters, whereas the latter work involves only 2
characteristic lengths. Furthermore, all the nonzero components of the
4th and 6th order elastic moduli tensors are also represented in terms of
the classical and additional parameters. It should be noted that hex-
octahedral and diploidal classes are the only two centrosymmetric
classes of cubic crystals. Some discussions on the symmetry groups of
diploidal class will also be given.

Although, the current work is concerned with the extension of
Toupin–Mindlin first strain gradient theory to cubic crystals of hex-
octahedral class and the determination of the pertinent material

constants, we briefly make note of some contributions on gradient
theories for elastic solids. Plasticity is out of the scope of the current
study and, hence, to avoid distracting the reader from the main theme
we have refrained ourselves from discussing gradient theories on
plasticity. A scrutiny of the literature reveals that there are an abundant
amount of literature on various forms of gradient elasticity. Much ef-
forts have been given towards the development of simpler versions, so
that the corresponding governing equations are more convenient to
work with (Altan and Aifantis, 1997; Askes et al., 2002; Lazar and
Maugin, 2005; Metrikine and Askes, 2006). Lazar and Po (2015) give a
simplified version of first strain gradient theory, but for anisotropic
media. For a more comprehensive literature on various simplified
versions of gradient theories, one should consult the works of Askes and
Aifantis (2011); Cordero et al. (2016); Polizzotto (2017). Establishment
of some type of relationships between certain simplified strain gradient
continuum and discrete models have also been proposed in the litera-
ture (Askes et al., 2002; Metrikine and Askes, 2006). Polyzos and
Fotiadis (2012) have related both first and second strain gradient the-
ories in their original forms to an atomistic model except for one-di-
mensional case. Lam et al. (2003), associated with simplified gradient
theory measured the pertinent gradient constants experimentally; the
experiments were carried out on the epoxy cantilever beam.
Danescu and Grenet (2012), combining continuum and discrete models
have obtained the gradient constants of certain gradient theory.

In general, the determination of the material characteristic lengths
and additional elastic constants corresponding to any type of higher
order mathematical framework via laboratory experimentation is quite
tedious. On the other hand, some theoretical approaches which are
based on a combination of the higher order continuum theory of in-
terest and the atomistic features of the pertinent crystal have been
promising (Shodja and Tehranchi, 2010; Shodja et al., 2012; 2013;
Ojaghnezhad and Shodja, 2012; 2013; Admal et al., 2017). This paper
aims to present an atomic model of cubic crystals in the context of
Toupin–Mindlin strain gradient elasticity and subsequently combined
with ab initio density functional theory (DFT) calculations, extract the
elastic constants and the characteristic lengths for some crystals falling
in the hexoctahedral class.

Previously, some theoretical approaches for the calculation of var-
ious material parameters pertinent to different continuum theories in
their original forms and without any simplifying assumption have been
given. For example, Shodja and Tehranchi (2010, 2012) presented an
analytical procedure to estimate the characteristic lengths for face-
centered cubic (fcc) crystals in first strain gradient theory by utilizing
many-body long range Finnis–Sinclair potentials (Finnis and
Sinclair, 1984). Shodja et al. (2012) applied this procedure to calculate
the additional constants for second strain gradient theory which is
suitable for capturing the surface effect. Later, by using ab initio DFT
calculations (Shodja et al., 2013) determined the elastic constants in
first strain gradient theory for isotropic media. In their work the ad-
ditional constants were related to the elements of Hessian matrix ob-
tained from ab initio DFT. Ojaghnezhad and Shodja (2013) employed ab
initio calculations based on DFT and calculated the additional constants
pertinent to the second strain gradient theory for isotropic media. They
also calculated the modulus of cohesion and surface energy. Recently,
Admal et al. (2017) extended the work of Shodja and Tehranchi (2010)
to the case of anisotropic media. Utilizing empirical potentials and first
strain gradient theory, they presented some analytical expressions for
the corresponding components of the elastic moduli tensors associated
with anisotropic media.

The present paper is organized as follows. Section 2 consists of 3
sections. In Section 2.1, the equations of motion, constitutive relations,
and boundary conditions are presented for materials with general ani-
sotropy. Section 2.2 discusses the transformation matrices associated
with two centrosymmetric classes of cubic crystals. Then the con-
stitutive relations and equations of motion are specialized for cubic
crystals of hexoctahedral class. In Section 2.3, for the cubic crystals of
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