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A B S T R A C T

A pileup of edge dislocations against an arbitrarily inclined flat bimetallic interface is considered. Equilibrium
positions of dislocations are determined for a given number of dislocations and specified material properties,
assuming that the resolved shear stress along the pileup plane from a remotely applied loading is uniform and
equal for all interface inclination angles. Numerical results are compared for pileups at 0°, 30°, 45°, and 60°
relative to the interface normal. The overall dislocation distribution is mildly affected by the inclination of the
interface, although there are some notable differences. While an inclined interface repels the first and last
dislocation stronger than the orthogonal interface, for piled-up dislocations in-between this is not necessarily the
case. Small differences in the pileup length and the proximity of the leading dislocation to differently inclined
interfaces can considerably affect the interface stresses. The magnitude of interface stresses decreases with the
increase of the shear moduli ratio G2/G1 due to stronger repulsion exerted on dislocations by stiffer interfaces.
The disparity in Poisson’s ratio also affects the interface stresses. The back stress behind a trailing dislocation is
evaluated and discussed.

1. Introduction

The study of dislocation pileups against second-phase particles and
grain boundaries has been a classical topic of mechanics and materials
science of importance for the analysis of inelastic material response and
fracture. An early study of dislocation pileups was performed by
Eshelby et al. (1951), who considered pileups in an infinite homo-
geneous medium in which the leading dislocation was assumed to be
locked. Further contributions were made by many investigators, who
addressed pileups of screw and edge dislocations against circular in-
homogeneities and bimetallic interfaces. The effects of elastic aniso-
tropy and the nonlinearity due to dislocation cores were examined, as
well as the stress fields of double ended pileups in stacked slip planes
and of multiple dislocation-wall pileups (Chou, 1966; Barnett and
Tetelman, 1967; Barnett, 1967; Kuang and Mura, 1968; Thölén, 1970;
Smith, 1972; Kuan and Hirth, 1976; Wagoner, 1981; Öveçoğlu et al.,
1987; Voskoboinikov et al., 2007; 2009; Hall, 2010; Baskaran et al.,
2010; Geers et al., 2013; Scardia et al., 2014; Zhang, 2017; Kapoor and
Verdhan, 2017).

Edge dislocation pileups against a plane bimetallic interface were
studied analytically by the method of continuously distributed in-
finitesimal dislocations by Kuang and Mura (1968). They solved ana-
lytically the singular integral equation for equilibrium positions of
dislocations, but their solution involved infinite products which were
quite demanding for computations. Discrete edge dislocation pileups
were investigated numerically by Kuan and Hirth (1976), who

incorporated in their analysis the nonlinear dislocation core terms.
Wagoner (1981) studied the corresponding anisotropic elastic effects.
Öveçoğlu et al. (1987) also considered discrete edge dislocation pileups
against a plane bimetallic interface, and evaluated the interface stresses
for various combinations of material parameters. More recently,
Voskoboinikov et al. (2009) presented an asymptotic analysis of dis-
location pileups against a bimetallic interface, while Lubarda (2017a)
presented an analysis of dislocation pileups against both a circular in-
homogeneity and a flat bimetallic interface.

In all of the above work the dislocation pileups were assumed to be
along the glide direction orthogonal to the interface. In the present
paper we extend these analyzes by considering discrete edge dislocation
pileups against a flat bimetallic interface which is arbitrarily oriented
relative to the pileup (glide) direction. We solve numerically the non-
linear algebraic equations that specify equilibrium positions of dis-
locations, for a given number of dislocations and specified material
properties. The magnitude of the resolved shear stress along the pileup
direction is assumed to be uniform and equal for each inclination φ of
the interface. The derivation of the expressions for dislocation forces,
which must vanish in equilibrium, is lengthy and tedious, but we were
able to cast them in a relatively compact form for any angle φ. The
simplified expressions are then deduced for = ∘φ 0 , 30°, 45°, and 60°.
The overall dislocation distribution is mildly affected by the inclination
of the interface, although there are some notable differences. While an
inclined interface repels the first and last dislocation stronger than the
interface orthogonal to the glide plane, for piled-up dislocations in-
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between this is not necessarily the case. Furthermore, small differences
in the pileup length and the proximity of the leading dislocation to
differently inclined interfaces can considerably affect the interface
stresses. The magnitude of these stresses decreases with the increase of
the shear moduli ratio G2/G1 due to stronger repulsion exerted on
dislocations by stiffer interfaces. The disparity in Poisson’s ratio also
affects the interface stresses. The variation of the back stress behind a
trailing dislocation of a pileup is determined for different orientation of
the interface. There is a small effect of φ on the magnitude of the back
stress. Far behind a trailing dislocation, the back stress approaches the
stress levels caused by a superdislocation of the Burgers vector Nb lo-
cated at the interface, independently of φ. An analysis of screw dis-
location pileups against an inclined bimetallic interface is reported in
Lubarda (2017b).

In the presented analysis, the dimensionless material parameters α
and β (Dundurs, 1969) are used, which are defined in terms of
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After nondimensionalisation of the problem, the two dimensionless
parameters that play a prominent role for the most part of the analysis
are the parameters q and γ, defined in terms of α and β by
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For example, if = ∞Γ (rigid interface, G2 > > G1), the dimensionless
parameters are

= = −
−

=
−

≤ ≤

= + ≤ ≤

α β ν
ν

q
ν

q γ

q
q

γ

1, 2 1 2
1

, 1
3 4

, (1/3 1), 2

1 , (1 5/3).

1

1 1

If =Γ 1 (equal shear moduli of two materials, =G G1 2), then
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2. Edge dislocation pileups

Fig. 1 shows a pileup of N positive edge dislocations of a Burgers
vector = >b b 0x against a bimetallic interface inclined by an angle

φ≠ ± 90° relative to the glide plane normal. It is assumed that the
resolved shear stress along the glide plane of dislocations, caused by
remotely applied loading, is uniform along the glide plane and in-
dependent of φ. We denote this shear stress by τa. It is the only part of
applied stress that is relevant to dislocation motion (glide) considered
in this paper. The external loading has to be such that τa is directed
toward the interface, i.e., = −=τ τ ,xy

a
y

a
0 in order to have a driving force

for piling-up of dislocations in the case Γ > 1. The contribution to the
resolved shear stress from the interactions among dislocations in the
presence of the interface can be calculated by using the results of
Head (1953) and Dundurs (1969), as described in the appendix of the
paper. For the ith dislocation, at the position xi, this shear stress is
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The first term on the right hand-side is the self-shear stress contribution
of the dislocation at xi, due to its image effects caused by the interface,
while the second term is the sum of resolved shear stresses caused by all
other dislocations in the pileup. In the equilibrium pileup configuration,
the glide component of dislocation force on each dislocation must
vanish,
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The expressions for τb, j(xi) are derived in the appendix of this paper
for any angle φ≠ ± 90°. In particular, if the interface is orthogonal to
glide plane ( = ∘φ 0 ), the resolved shear stress τb, j(xi) takes an explicit,
compact form
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For = ∘φ 30 , the expression is
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while for = ∘φ 45 ,
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Finally, for = ∘φ 60 the resolved shear stress is found to be
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In the limiting case = ∘φ 90 , a pileup is along the interface, made of
N interface edge dislocations, provided that the leading dislocation in
the pileup is locked. In this case, the interaction shear stress is
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where x is measured from the position of the locked dislocation =x( 0),1
and + = + −γ α β1 (1 )/(1 )2 . From the physical point of view, pileups of
interface dislocations are of less significance, albeit they may be of some
interest in the analysis of semicoherent interfaces, for which interface
dislocations play important role in misfit accommodation and strain re-
laxation (Freund, 1993; Lubarda and Kouris, 1996; Lubarda, 1998).

Fig. 1. A pileup of N edge dislocations against a bimetallic interface under uniform re-
solved shear stress along the glide plane =y 0. A bimetallic interface ( =u 0) is inclined
by an angle φ relative to the glide plane normal y. In the equilibrium configuration the
configurational force on each dislocation vanishes ( =f 0i ), which specifies the corre-

sponding positions of dislocations xi ( = ⋯i N1, 2, 3, , ).
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