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a b s t r a c t 

Adiabatic shear banding (ASB) is a precursor of failure of high strength metals and alloys when submitted 

to impact and other high strain rate loading. As a mechanism of plastic flow localization triggered by 

a thermo-mechanical instability in the context of dynamic plasticity, ASB causes a discontinuity of the 

strain/strain rate field. In the present paper, some models available in literature are assessed regarding 

their ability to reproduce ASB features and further consequences. Some tracks for further developments 

in the field are also given. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Adiabatic shear banding (ASB) is a process of localized defor- 

mation which occurs at low stress triaxiality under dynamic load- 

ing involving quasi adiabatic conditions. It results from a ther- 

momechanical instability and, though developing in very narrow 

bands, i.e. at a mesoscale, it may lead to a premature failure of the 

structural material, i.e at the macroscale. Shown as causing a loss 

of ballistic performance of protection (armor) plate made of high 

strength steels and alloys, adiabatic shear banding has been widely 

studied for military applications, mostly from a material viewpoint 

with the aim of reducing possibly material ASB-sensitivity. On the 

other hand, it is possible to take advantage of this fracture-favoring 

mechanism, in particular in cutting processes, including notably 

high speed machining (of e.g. titanium alloys), for it facilitates the 

chip serration and further reduces the cutting force. Condition for 

ASB initiation has during a long time been considered as failure 

criterion in the design of protection structures submitted to impact 

and other high strain rate loading. However, this approach gen- 

erally leads to over-conservative sizing. It has thus become indis- 

pensable to deal explicitly with this progressive, irreversible, soft- 

ening mechanism of localized deformation in the same manner as 

it has become necessary to account for damage-induced soften- 

ing in another but not so far field of application. The purpose of 

the present contribution is to consider a selection of ASB-oriented 

modelling approaches available in literature (while not pretending 

to be exhaustive) in view of guiding researchers and engineers in 
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their aim of dealing with adiabatic shear banding and further con- 

sequences in structural metals and alloys. 

For decades, adiabatic shear banding has been experimentally 

evidenced as pre-failure mechanism for a wide range of metals and 

alloys used as structural materials, including but not restricted to 

• steels: Martensitic steel, Zener and Hollomon (1944) ; HY100, 

Marchand and Duffy (1988) ; Maraging C300, Zhou et al. 

(1996-I) ; 4340VAR, Minnaar and Zhou (1998) ; ARMOX500T, 

Roux et al. (2015) ; etc 
• titanium alloys: various titanium alloys, Mazeau et al. (1997) ; 

Ti-6Al-4 V, Liao and Duffy (1998) ; β-CEZ, Sukumar et al. (2013) ; 

UFG pure Ti, Wang et al. (2014) ; etc 
• aluminum alloys: AA25XX, Liang et al. (2012) ; AA50XX, 

Yan et al. (2014) ; AA60XX, Adesola et al. (2013) ; AA70XX, 

Mondal et al. (2011) ; etc 

On post-mortem structures, the bandwidth which generally 

covers several grains is mostly seen to have well-defined borders 

allowing for measuring its mean value along its length, leading 

to dimensions typically ranging from some micrometers to some 

hundreds of micrometers. Moreover, the presence of distinct bor- 

ders reinforces the admitted statement according to which adia- 

batic shear banding involves a discontinuity, namely a weak dis- 

continuity (i.e. of the displacement/velocity gradient). It must also 

be noted that the distinction between transformation/transformed 

and deformation/deformed bands seems to be less and less perti- 

nent in the sense that some microstructure transformation always 

takes place even in very small proportion and that large deforma- 

tion features adiabatic shear bands. 

In the modeling process, the choice of the state variables is con- 

ditioned by the size of the representative volume element (RVE), 
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Nomenclature 

Physical quantities 

ρ mass density (kg.m 

-3 ) 

c specific heat (J.kg -1 .K 

-1 ) 

t time (s) 

Geometrical quantities 

w width of the strongly heterogeneous deformation 

(ASB) zone (m) 

W width of the weakly heterogeneous deformation 

zone (m) 

h RVE/FE characteristic length (m) 

� whole domain 

�G global domain 

� ˜ G fictitious domain 

�L local domain 

�S domain covered by the structure 

Kinematics related quantities 

e e elastic strain 2nd order tensor (-) 

d 

p plastic strain rate 2nd order tensor (s -1 ) 

u i i th component of the displacement field (m) 

v i i th component of the velocity field (m.s -1 ) 

Stress related quantities 

σ Cauchy stress 2nd order tensor (Pa) 

s deviator of the Cauchy stress 2nd order tensor 

(Pa) 

σm 

= 

1 
3 σ : I mean stress (Pa) 

σeq = 

√ 

3 
2 s : s equivalent stress (Pa) 

r isotropic hardening force (Pa) 

σ y yield stress (Pa) 

Temperature related quantities 

T absolute temperature (K) 

T 0 initial temperature (K) 

T m 

melting point (K) 

g ( T ) thermal softening function (-) 

β inelastic heat fraction Taylor-Quinney coefficient (-) 

k thermal conductivity (W.m 

-1 .K 

-1 ) 

Elasticity related quantities 

C elastic stiffness 4th order tensor (Pa) 

E Young’s modulus (Pa) 

ν Poisson ratio (-) 

μ shear modulus (Pa) 

Plasticity related quantities 

κ isotropic hardening variable, equivalent/cumulated 

plastic strain (-) 

˙ κ equivalent plastic strain rate (s -1 ) 

h ( κ) athermal stored energy (J.m 

-3 ) 

h ′ ( κ) plastic strain hardening function (Pa) 

k ( ̇ κ) plastic strain rate function (/) 

Damage related quantities 

f void volume fraction (-) 

D damage intensity (-) 

D damage-like 2nd order tensor (-) 

q ( D ) damage-induced softening function (-) 

P ( D ) damage-related 4th order tensor (-) 

Thermodynamics related quantities 

� (T , e e , κ) = � 

r (T , e e ) + � 

s (T , κ) Helmholtz free energy 

(state potential) (J.m-3) 

ϖr ( T , e e ) recoverable part of the 

free energy (J.m 

-3 ) 

ϖs ( T, κ) stored part of the free 

energy (J.m 

-3 ) 

F yield function (rate de- 

pendent) (/) 

Miscellaneous 

I identity 2nd order tensor (-) ⎧ ⎪ ⎨ 

⎪ ⎩ 

ˆ x = x + 

1 
2 	 

2 ∇ 

2 x 

x̄ = 

x 

( 1 − ˆ D ) 

ˆ D = 

√ 

ˆ D : ˆ D 

a i, j = 

∂ a i 
∂ x j 

(/ ) 

Model constants 

A, B, n, q, C, ˙ κ0 Johnson-Cook model constants in 

models {1} and {5} 

K, κ0 , n, q, ˙ κ0 , m, ˙ κc constants in model {2} 

q 1 , q 2 , K, κ0 , n, α, ˙ κ0 , 

m 

constants in model {3} 

K, κ0 , n, δ, q, ˙ κ0 , m, 

γ , α, κ1 , κ2 , ˙ κr 

constants in model {4} 

b, W c constant in model {5} in comple- 

ment to Johnson-Cook model con- 

stants above 

	 , A, B, b, q, η, m constants in model {6} 

h 0 , H, λ, C constants in model {7} in complement 

to the constitutive model constants 

H constant in model {8} in complement 

to the constitutive model constants 

h 0 , H constants in model {9} in complement 

to the constitutive model constants 

A, B, b, γ , a 1 , a 2 , η, 

m 

constants in model {10} 

an explicit and frequently tacit choice. We are here considering ul- 

timately a RVE size which is compatible with engineering applica- 

tions, i.e. of the order of the millimeter and above, involving the 

use of commercial finite element (FE) computation code for the 

design of large structures. Formally, the RVE material point cor- 

responds to the FE integration point. As a FE may have several 

integration points (this is actually often the case), there is gen- 

erally no straightforward link between the RVE size and the FE 

size. However, for simplifying the following discussion on the scale 

postulates, let consider that this link is satisfied as for a FE with 

reduced integration, i.e. a single Gauss point. The size postulate 

evoked above, which implies for the models to phenomenologi- 

cally describe the consequences of the underlying physics and not 

the physics itself, requires simplifications which may be sometimes 

strong. This is particularly true when it is attempted to model the 

very behavior of the band material during the shear banding pro- 

cess. ASB lasting only a few microseconds or tens of microseconds, 

the behavior in question is indeed generally unknown, or at least 

ill-known, due to a lack of accurate space- and time-resolved mea- 

surements. The common hypothesis about the adiabaticity condi- 

tion between the shear band and the bulk material is also debat- 

able – as is the adiabaticity condition between the bulk material 

and its environment. It however allows for solving the mechanical 

problem only, and not both the mechanical and thermal problems, 

by considering the plastic dissipation as heat source. When deal- 

ing with adiabatic shear banding, and other softening mechanisms, 

using standard FE computation codes, the loss of mesh objectivity 

of the numerical results and the large distortion of the finite ele- 

ments are the main computational issues. There exist some regu- 

larization techniques aiming at attenuating the mesh dependence 
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