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a b s t r a c t 

This paper presents a general numerical scheme for the fractional plastic flow rule, dedicated to a wide 

class of materials manifesting the non-normality of plastic flow and induced plastic anisotropy. To deter- 

mine the vector of the plastic flow, a special numerical procedure has been developed, which is applicable 

for any smooth and convex yield function. The obtained approximation is verified based on an analytical 

solution. The paper also presents a set of numerical results for the generalised Drucker–Prager model. 

© 2017 Elsevier Ltd. All rights reserved. 

1. Introduction 

Natural and man-made materials are very often forced to oper- 

ate in both the reversible (elastic) and irreversible (plastic) ranges. 

Optimal utilization of these ranges requires a detailed (numeri- 

cal) analysis under the prescribed mechanical conditions, which 

depend on the application. One of the challenging tasks herein is 

to reproduce by the constitutive model, in the irreversible range, 

the phenomena of plastic anisotropy and/or effects causing non- 

associative flow resulting in plastic volume change. 

The group of materials which manifest plastic anisotropy and 

non-associative flow is very broad including, e.g.: (i) geomateri- 

als: rocks ( Maier and Hueckel, 1979; Lubarda et al., 1996 ), granu- 

lar materials ( Drescher and Detournay, 1993; Wang et al., 2001 ), 

clays ( Ling et al., 2002; Jiang et al., 2012 ), and reinforced soils 

( Michalowski and Zhao, 1995 ); (ii) concrete ( Palaniswamy and 

Shah, 1974; Hu and Schnobrich, 1989 ); (iii) ceramics ( Reyes-Morel 

and Chen, 1988; Radi and Bigoni, 1993 ); (vi) composites ( Lei and 

Lissenden, 2007 ); and (v) metallic materials ( McDowell, 2008; 

Taherizadeh et al., 2011 ). Nevertheless, it should be emphasised 

that the importance of both these phenomena depends on the spe- 

cific material and the applied mechanical conditions under which 

it operates. Moreover, although often modelled using the same 

mathematical formula, the physical meaning of plastic anisotropy 

and non-associativity of plastic flow differs depending on the 

material. As an example, for geomaterials it appears as a result 

of the dilatancy effect, which accompanies the shearing process 
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( Reynolds, 1885; Michałowski and Mróz, 1978 ); in metallic mate- 

rials it results from the dislocation nucleation ( Ziegler, 1983; Dao 

and Asaro, 1993; Racherla and Bassani, 2007 ), nucleation of voids 

during plastic flow ( Marin and McDowell, 1998 ), or the breakup 

of grains into disoriented, blocky subgrains ( Hughes et al., 1997; 

Steinmann et al., 1998 ). 

With respect to the mathematical modelling of irreversible me- 

chanical processes, recently, emphasis has been placed on the ap- 

plication of the fractional calculus (FC), the branch of mathematical 

analysis which deals with differential equations of an arbitrary or- 

der ( Nishimoto, 1984–1991; Podlubny, 1999; Kilbas et al., 2006 ). 

Herein, the fundamental aspect is that the fractional derivative in- 

troduces the non-local effects by definition, and with a limited 

number of additional parameters, a family of models well suited to 

mimic the behaviour of a wide class of materials is obtained. One 

can even mention here the statement by Katsikadelis ( Katsikadelis, 

2015 ) regarding the meaningful role of FC in modern mechanics: 

“It would not be excessive to say that simulating physical systems us- 

ing only integer-order derivatives is similar to doing arithmetic (alge- 

bra) using only integer numbers”. 

It should be pointed out that one can obtain different generali- 

sations of classical plasticity models, depending on which variable 

the fractional operator acts upon. Let us mention in this respect 

the papers: ( J. et al., 2012 ) where a 1D non-local in strain state 

formulation of plasticity was proposed; ( Sumelka, 2014b; Sumelka 

and Nowak, 2016 ) where a 3D non-local in the stress state model 

was defined; ( Sumelka, 2014a ) where a non-local in space plastic- 

ity model was considered; and ( Suzuki et al., 2016 ) where a 3D 

non-local in time model of plasticity was shown. It is important, 

that these different models can also be coupled depending on the 

need; however the common problem regarding FC will remains, 
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namely that the analytical solution is rarely possible, and at once 

the numerical approximations are needed. 

This paper is devoted to the above mentioned aspect of looking 

for approximated solutions for plasticity models generalised using 

FC, concentrating on the fractional flow rule concept formulated 

in Sumelka (2014b ) and developed in Sumelka and Nowak (2016) . 

The numerical scheme proposed in this paper extends previous re- 

sults presented in Sumelka and Nowak (2016) and applies to any 

smooth and convex yield surface. To obtain this flow chart, the ap- 

proximation (among other known concepts ( Gorenflo et al., 2002; 

Sun and Wu, 2006; Lin and Xu, 2007 )) of the fractional operator 

proposed in Odibat (2006) has been selected. As in Sumelka and 

Nowak (2016) , the final verification analysis concentrates on in- 

duced plastic anisotropy and volume change effects in the plastic 

range due to the non-associativity of the fractional flow. The algo- 

rithm has been implemented in the Abaqus/Explicit code and 3D 

simulations of uniform and non-uniform tension of a cylindrical 

specimen have been performed. 

The paper is structured as follows. In Section 2 , the concept of 

fractional flow rule is discussed. Section 3 deals with the general 

computational scheme for the fractional plastic flow for smooth 

and convex yield surface. Section 4 is devoted to the verification 

of the proposed algorithm. Section 5 concludes the paper. 

2. The fractional flow rule concept 

2.1. Remarks on fractional calculus 

Fractional Calculus (FC) deals with the integrals and derivatives 

of arbitrary (even complex) orders as mentioned ( Nishimoto, 1984–

1991; Podlubny, 1999; Kilbas et al., 2006 ). Unlike the classical in- 

teger order integration and differentiation, where a single defini- 

tion for both operations exists, FC introduces an infinite number of 

possible definitions of their generalisations ( Oliveira and Machado, 

2014 ). Hence, the specific type of fractional derivative applied in 

the mathematical model (in a phenomenological sense) should be 

argued as the one that gives the best mapping of experimental ob- 

servations. 

In this paper, the both sided fractional derivative obtained as 

a linear combination of the left-sided and the right-sided Caputo- 

type derivatives will be applied. We call such an operator a Riesz–

Caputo (RC) type operator ( Agrawal, 2007; Frederico and Torres, 

2010 ) and we define it as follows. 

The generalized fractional integral K 

α
P 

of a function f with argu- 

ment t is defined as ( Odzijewicz et al., 2013 ) 

(K 

α
P f )(t) := p 

∫ t 

a 

k α(t, τ ) f (τ ) dτ + q 

∫ b 

t 

k α(τ, t) f (τ ) dτ, (1) 

where P = 〈 a, t, b, p, q 〉 is the parameter set, t ∈ [ a, b ], p, q are 

real numbers, k α( t, τ ) is a kernel which may depend on α, and 

f is any function defined almost everywhere on ( a, b ) with val- 

ues in R . If k α is a difference kernel, i.e. k α(t, τ ) = k α(t − τ ) and 

k α ∈ L 1 ([0 , b − a ]) then K 

α
P 

: L 1 ([ b, a ]) → L 1 ([ b, a ]) is well defined, 

bounded and linear. Special cases of the operator K 

α
P 

are obtained 

for the kernel ( α > 0) 

k α(t − τ ) = 

1 

�(α) 
(t − τ ) α−1 , (2) 

namely, if P = 〈 a, t, b, 1 , 0 〉 , we have 

(K 

α
P f )(t) = 

1 

�(α) 

∫ t 

a 

(t − τ ) α−1 f (τ ) dτ =: ( a I 
α
t f )(t) , (3) 

or, if P = 〈 a, t, b, 0 , 1 〉 , we obtain 

(K 

α
P f )(t) = 

1 

�(α) 

∫ b 

t 

(τ − t) α−1 f (τ ) dτ =: ( t I 
α
b f )(t) , (4) 

where � is the Euler gamma function. The integrals ( a I 
α
t f )(t) and 

( t I 
α
b 

f )(t) are commonly known as the left and right Riemann–

Liouville fractional integrals, respectively. 

The left-sided and the right-sided Caputo derivatives are then 

defined as: 

(B 

α
P ) f (t) := 

C 
a D 

α
t f (t) = 

1 

�(n − α) 

∫ t 

a 

f (n ) ( τ ) 

( t − τ ) α−n +1 
dτ, 

for t > a, (5) 

and 

−(B 

α
P ) f (t) := 

C 
t D 

α
b f (t) = 

(−1) n 

�(n − α) 

∫ b 

t 

f (n ) ( τ ) 

( τ − t) α−n +1 
dτ, 

for t < b, (6) 

where n = � α� + 1 , �·� denotes the floor function and (B α
P 
) f (t) := 

K 

n −α
P 

◦ d n 

dt n 
. 

Finally, the RC type fractional derivative is 

D 

α f (t) = 

RC 
a D 

α
b f (t) = 

1 

2 

(
C 
a D 

α
t f (t) + (−1) n C 

t D 

α
b f (t) 

)
. (7) 

It should be pointed out that for the integer values of α, Eq. (7) re- 

duces to the classical integer order derivative, and independently 

of α RC derivative of a constant gives zero. 

2.2. The plasticity model with the fractional plastic flow rule 

The concept of fractional plastic flow was presented in papers 

( Sumelka, 2014b, 2014c; Sumelka and Nowak, 2016 ). This new idea 

is based on the standard assumptions of the theory of plasticity, 

i.e. 

˙ ε = ˙ ε e + ˙ ε p , (8) 

˙ σ e = L 

e : ˙ ε e , (9) 

˙ ε p = �p , (10) 

but the direction of flow p is computed using a fractional deriva- 

tive, namely 

p = D 

σ

αF , (11) 

where ε stands for the total second order strain tensor, ε e and 

ε p denote elastic and plastic strains, σe denotes the second or- 

der Cauchy stress tensor, L 

e denotes the fourth order elastic con- 

stitutive tensor, � is a scalar multiplier, F is the yield function, 

D 

α
σ denotes partial fractional differentiation of RC type, and α de- 

notes the order of derivative (the order of flow). Eq. (11) is called 

the fractional flow rule , which makes the direction of p dependent 

on some virtual neighbourhood of the stress state at the mate- 

rial point (defined by terminals in the RC operator - cf. Fig. 1 and 

detailed discussion in Sumelka and Nowak (2016) ). For α = 1 , a 

smooth passage to the classical associated plastic flow is obtained. 

It is easy to understand, looking at Eqs. (5) and (6) , that the 

analytical solution for p does not exist in general, even for a very 

basic function used to define F . Therefore, in the next section a 

numerical approximation of p assuming a smooth and convex yield 

function is given and verified subsequently. 

2.3. Remarks on thermodynamic restrictions 

The presented plasticity model, including the fractional flow 

rule, belongs to the class of phenomenological models with inter- 

nal state variables. The applicability of the model, in the sense of 

a range of physically allowable crucial model parameters (i.e. ter- 

minals and order of flow - cf. Eq. (11) , results from the thermo- 

dynamic restrictions, and depends on the type of yield function 

considered. Constraints to be fulfilled are obtained in the classical 

manner, as presented below. 

Please cite this article as: W. Sumelka, M. Nowak, On a general numerical scheme for the fractional plastic flow rule, Mechanics of 

Materials (2017), http://dx.doi.org/10.1016/j.mechmat.2017.02.005 

http://dx.doi.org/10.1016/j.mechmat.2017.02.005


Download English Version:

https://daneshyari.com/en/article/7178591

Download Persian Version:

https://daneshyari.com/article/7178591

Daneshyari.com

https://daneshyari.com/en/article/7178591
https://daneshyari.com/article/7178591
https://daneshyari.com

