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In Part I, the results of experimental evaluation of the mechanical properties of pure polyurea (PU) and 

polyurea with milled glass composites (PU-MG) in low (1–20 Hz) and high (0.5–1.5 MHz) frequency 

ranges (Nantasetphong et al., 2016a) have been reported, focusing on the dependence of these proper- 

ties on frequency, temperature, and the milled glass volume fraction. Here, we report the results of the 

corresponding micromechanical modeling. The models are developed, based on three different approx- 

imations: (1) dilute random, (2) non-dilute random, and (3) non-dilute periodic distributions of inclu- 

sions. Different orientation distributions of fibers, e.g., uniaxial parallel, in-plane random, and 3D random 

are considered and their results are compared with experimentally measured data presented in (Nan- 

tasetphong et al., 2016a). Moreover, the computational results are used to construct master curves of 

dynamic Young’s storage and loss moduli and compare these with those constructed from experimental 

data. The 3D random and in-plane random calculation results are compared with the dynamic longitu- 

dinal and shear moduli of PU-MG composites obtained from ultrasonic wave measurements. These com- 

parisons demonstrated that, as expected, the orientation distribution of the short fibers was affected by 

the thickness of the composite sample, and this effect was manifested in overall elasticity tensor of the 

composite. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Polyurea with milled glass composites (PU-MG) are introduced 

and their mechanical behavior was experimentally characterized 

and reported in an accompanying paper ( Nantasetphong et al., 

2016a ). In this paper, micromechanical models that describe their 

behavior with varying geometrical and mathematical complexity 

are presented. 

One of the first models for short-fiber composites is the shear 

lag model developed by Cox (1952) ; Tucker III and Liang (1999) . 

Later, Eshelby solved the elasticity problem of an ellipsoidal inclu- 

sion embedded in infinitely large matrix for the elastic stress field 

in and around the inclusion ( Eshelby, 1957, 1961 ). In these cele- 

brated works, he showed that within an ellipsoidal inclusion the 

strain field is uniform, and is related to a uniform transformation 

strain through a tensor now commonly referred to as Eshelby’s 

tensor. The tensor depends only on the inclusion aspect ratios and 

the matrix elastic constants ( Mura, 2013 ). By letting the inclusion 
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be a prolate ellipsoid, one can use Eshelby’s results to find the 

stiffness of a composite with cylindrical fibers at dilute concentra- 

tions ( Tucker III and Liang, 1999; Chow, 1978; Nemat-Nasser and 

Hori, 2013 ). For non-dilute discontinuous fiber composite models, 

the interaction between fibers is taken into account either directly 

or indirectly. Mori and Tanaka proposed that the average strain 

in the fiber should be proportional to the average strain in the 

matrix. This idea was used to treat non-dilute composite materi- 

als ( Mori and Tanaka, 1973 ). Taya and Mura applied Eshelby’s and 

Mori-Tanaka’s ideas to create models to predict the longitudinal 

modulus of a short-fiber composite containing fiber-end cracks in 

resin ( Taya and Mura, 1981 ). Another approach to account for fi- 

nite fiber volume fraction is the self-consistent method. In the self- 

consistent method, one has to numerically find the properties of a 

composite in which a single particle is embedded in an infinite 

matrix that has the, yet unknown, average properties of the com- 

posite. The solution of the self-consistent approach for some com- 

posites may require using iterative scheme ( Chou et al., 1980; Laws 

and McLaughlin, 1979 ). Nemat-Nasser and Hori (2013) ; Nemat- 

Nasser et al. (1982) ; Iwakuma and Nemat-Nasser (1983) developed 

a method based on the periodic distribution of inclusions, in which 
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the inclusion can be void or solid and can have various shapes. At 

high volume fraction, this method accounts for the interaction be- 

tween particles in a more direct manner than either Mori–Tanaka 

or self-consistent methods. However, this method might not ap- 

propriately represent the microstructure of a composite material 

that has inclusions randomly distributed in the matrix. Despite 

this concern, the assumption of periodicity has been proved very 

powerful in predicting mechanical properties of composites with 

high inclusion-interaction effects and random distribution of in- 

clusions ( Nemat-Nasser and Hori, 2013; Nemat-Nasser et al., 1982; 

Iwakuma and Nemat-Nasser, 1983 ). Another method that accounts 

for the interaction between inclusion and their surrounding ma- 

trix material in a direct manner is the double inclusion model (or 

three-phase model) developed by Hori and Nemat-Nasser (1993) . It 

is the generalized version of the Mori–Tanaka method. The model 

uses averaging scheme and produces the overall moduli of two- 

phase composites with greater flexibility and effectiveness than the 

self-consistent and the Mori–Tanaka method. The average stress 

and strain in a typical inclusion is estimated by embedding the 

typical inclusion in a finite ellipsoidal region of matrix elasticity 

and then this double inclusion is embedded in an infinite uni- 

form solid with the yet-unknown overall elasticity of the compos- 

ite ( Nemat-Nasser and Hori, 2013; Hori and Nemat-Nasser, 1993 ). 

By replacing the yet-unknown overall elasticity with the elastic- 

ity of the matrix, the model gives the Mori–Tanaka or two-phase 

model, while setting it as the unknown composite value gives the 

self-consistent estimate in the case both inclusions are coaxial. In 

general, other estimates may be achieved by any choice of com- 

bination of inclusion, matrix, and composite material properties. 

For other interesting methods, Tucker III and Liang have provided 

a thorough literature review ( Tucker III and Liang, 1999 ). 

In this study, micromechanical models were developed based 

on 3 different methods: (1) dilute random, (2) non-dilute ran- 

dom, and (3) non-dilute periodic distributions of inclusions. The 

first method implements Eshelby’s works ( Eshelby, 1961, 1957; 

Mura, 2013; Nemat-Nasser and Hori, 2013 ). The second method 

uses Mori–Tanaka averaging method ( Tucker III and Liang, 1999; 

Nemat-Nasser and Hori, 2013; Mori and Tanaka, 1973; Taya and 

Mura, 1981 ). The third method follows Nemat-Nasser and cowork- 

ers’ works ( Nemat-Nasser and Hori, 2013; Nemat-Nasser et al., 

1982; Iwakuma and Nemat-Nasser, 1983 ). In contrast with method 

1, methods 2 and 3 take into account the effect of particles in- 

teraction in two different unit cell structures. Each method has its 

own advantage. The dilute random distribution is the least com- 

plex approach and takes less computational time, but it is less ac- 

curate for high volume fractions of inclusions. The non-dilute ran- 

dom distribution of inclusions improves the accuracy of method 1, 

while it takes the same computational time. The non-dilute peri- 

odic distribution of inclusions requires more computational time 

due to the calculation of Fourier series representation of field vari- 

ables ( Nemat-Nasser and Hori, 2013; Nemat-Nasser et al., 1982; 

Iwakuma and Nemat-Nasser, 1983 ), but it provides the most accu- 

rate results among the three-presented methods. In each method, 

three models with different fiber orientations; uniaxial, in-plane 

random, and 3D random orientations were addressed using proper 

averaging techniques. Originally, these models were created for 

estimating mechanical properties of elastic composites; however 

Hashin showed that by replacement of the real elastic moduli 

by their complex counterparts (including storage and loss com- 

ponents), they can be directly utilized for viscoelastic composites 

( Hashin, 1970 ). 

2. Theory 

Consider the applied uniform strain εo (linear displacement) or 

uniform stress σ o on boundary of a composite. The average strain 

ε̄ or stress σ̄ over total volume of the composite will be: 

ε̄ = εo , (1) 

σ̄ = σo , (2) 

respectively ( Nemat-Nasser and Hori, 2013 ). The overall constitu- 

tive tensors for the composite can be written as: 

C̄ : εo = C m : εo + f �
(
C � − C m 

)
: ε̄�, (3) 

D̄ : σo = D 

m : σo + f �
(
D 

� − D 

m 

)
: σ̄�, (4) 

based on the calculated average stress and strain tensors, respec- 

tively. f � is the volume fraction of the fiber, C̄ , C �, and C m are the 

(to be determined) overall elasticity tensor of the composite, the 

elasticity tensor of the fiber, and the elasticity tensor of the ma- 

trix, respectively, D̄ , D 

�, and D 

m are the (to be determined) overall 

compliance tensor of the composite, the compliance tensor of the 

fiber and the compliance tensor of the matrix, respectively, ε̄� and 

σ̄� are the average strain and stress over the fiber volume. εo and 

σo are arbitrary. For a fundamental proof, (see Nemat-Nasser and 

Hori (2013) ). If the relation between ε̄� ( ̄σ�) and εo ( σo ) is known, 

one could solve for C̄ ( ̄D ). ε̄� and σ̄� may be related to εo and σo 

as: 

ε̄� = P � : εo , (5) 

σ̄� = Q 

� : σo , (6) 

where P � and Q 

� are introduced as tensors to transform εo and 

σo to ε̄� and σ̄�, respectively. Note that in ( Tucker III and Liang, 

1999; Hill, 1963 ), these tensors are denoted by letters A and B. 

Substitute Eqs. (5) and (6) into (3) and (4) , to write C̄ and D̄ as: 

C̄ = C m + f �
(
C � − C m 

)
: P �, (7) 

D̄ = D 

m + f �
(
D 

� − D 

m 

)
: Q 

�. (8) 

The three methods listed earlier provide different approxima- 

tions to tensors P � and Q 

�. Since micromechanical models for 

composites with short fibers based on dilute random, non-dilute 

random, and non-dilute periodic distributions of inclusions are 

well established in literatures ( Eshelby, 1961, 1957; Mura, 2013; 

Nemat-Nasser and Hori, 2013; Nemat-Nasser et al., 1982; Iwakuma 

and Nemat-Nasser, 1983; Tucker III and Liang, 1999 ), only the im- 

portant theoretical aspects and the necessary modifications of the 

models will be discussed here. 

2.1. Dilute random distributions of inclusions (DD model) 

This model considers an infinitely extended matrix with 

uniform-sized prolate spheroid inclusions in the matrix. Due to the 

low volume fraction (dilute model) the inclusions do not interact 

with the adjacent particles. Therefore the far-field strain (stress) 

experienced by any inclusion equals to the globally applied strain 

(stress). The average strain (stress) in the inclusion is proportional 

to the applied strain (stress) ( Nemat-Nasser and Hori, 2013 ). The 

shape of the prolate spheroid differs from the actual shape of the 

milled glass fiber. However, the prolate spheroid has a relatively 

long semi-major axis compared to the two equal semi-minor axes 

( l / r � 1) and could be considered a reasonable representation of 

the milled glass fibers. 

Fig. 1 (a) represents the structure of a composite with uniax- 

ial prolate spheriods. Geometry and dimensions of the prolate 

spheroid are shown in Fig. 2 (a) and Table 1 . The superscripted DD 

will be used to indicate all models developed from the method 
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