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a b s t r a c t 

This article presents a numerical study of the mechanical behavior of particulate compos- 

ites with stochastic composition. Two types of such materials are considered: composites 

with homogeneous elastic–plastic matrix and randomly distributed inclusions of stiffness 

sampled from a distribution function, and composites with matrix having spatially varying 

elastic–plastic material parameters with no inclusions as well as with randomly distributed 

identical inclusions. We observe that the presence of fluctuations in either inclusions or 

matrix material properties leads to smaller effective modulus, smaller strain hardening and 

a reduction of the yield stress of the composite. Fluctuations of the yield stress of the ma- 

trix leads to a significant reduction of the mean yield stress of the composite. Fluctuations 

of the elastic modulus and of the strain hardening are associated with the reduction of the 

mean of the distributions of elastic modulus and strain hardening of the composite. For the 

range of parameters considered, fluctuations lead to maximum principal stress fields with 

narrow distribution of values, which implies enhanced resistance to damage initiation. In- 

creasing the variance of the distribution functions from which local material properties are 

sampled, while keeping the mean constant, renders these effects more pronounced. This 

study is motivated by the growing interest in additive manufacturing technologies which 

open new possibilities for designing composite materials. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Composite materials are broadly used in engineering. 

The typical composite is made from two constituents, 

the matrix and the filler, with the filler distribution be- 

ing either random or controlled. Examples are particulate 

composites with randomly distributed reinforcing particles, 

fiber composites with short, chopped fibers randomly dis- 

tributed in the matrix, and woven fiber composites with 

a regular arrangement of reinforcing fibers ( Peters, 1998 ). 
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In all cases, all fillers encountered in given composite have 

the same material properties and the matrix is nominally 

homogeneous. Hence, the parameters defining the com- 

posite design space are the filler size, shape and spatial 

distribution. 

Biological materials are much more complex as they 

contain multiple ‘constituent phases’, exhibit graded com- 

positions and are structured on multiple scales. In addi- 

tion, living materials accommodate stochasticity in struc- 

ture and constituent properties to a level that makes one 

think that such fluctuations are essential for the proper 

functioning of these materials. Most connective tissues are 

made from collagen and elastin fibers forming complex 

networks. The composition and structure of these net- 

works are highly stochastic in cartilage, for example, and 
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almost regular in arterial walls and the human interver- 

tebral disk ( Humzah and Soames, 1988 ). Bone is a com- 

posite exquisitely structured on scales from the nanometer 

to the macroscopic scale, in which fluctuations of density 

and composition play a central role in providing the desir- 

able combination of strength and toughness ( Launey et al., 

2010 ). It is a stochastic porous material with a solid phase 

currently viewed as a bi-continuous composite of interpen- 

etrating hard mineral and soft collagen phases ( Chen et al., 

2011; Hamed et al., 2012 ). 

Traditional manufacturing technologies mandate the 

use of a small number of constituent materials in man- 

made composites. Furthermore, design considerations gen- 

erally indicate that variability is detrimental as may lead 

to premature failure. This paradigm can be now brought 

into question by the new possibilities offered by additive 

manufacturing. These techniques allow producing materi- 

als with virtually any composition and spatial distribution 

of constituents. Hence, they broaden the design space of 

composite materials to a level that could not be foreseen 

a decade ago. Therefore, it is timely to explore this design 

space, with the hope that new families of composites with 

enhanced properties can be identified. 

The goal of the present study is to explore part of the 

design space associated with the composite composition. 

To this end, the constraint on the number of constituents 

in the composite is relaxed and we study the effect on 

the effective behavior of allowing for spatial fluctuations 

of material properties, while keeping the mean of the dis- 

tributions of these properties constant. This is a follow-up 

of the investigation presented in Picu et al. (2014 ), where 

the effect of filler spatial distribution was investigated. It 

was seen that spatial correlations of filler positions lead 

to stiffer com posites with higher strain hardening rates 

and with higher effective damping ratios. The largest effect 

was obtained for power law correlations, case in which the 

fillers have a fractal distribution. 

To address the goal stated above, we consider three 

types of model composites: Type 1 – composites with ho- 

mogeneous elastic–plastic matrix and linear elastic inclu- 

sions of stiffness sampled from a distribution function. The 

mean of this distribution is kept constant and we inves- 

tigate the effect of its variance on the homogenized re- 

sponse of the composite; Type 2 – composites with spa- 

tial variability in the elastic–plastic material parameters of 

the matrix. Similarly, the mean of the distribution of these 

parameters is kept constant and the variable of the prob- 

lem is its variance. Type 2(a) contains no inclusions, while 

Type 2(b) composites have inclusions. In the Type 2(b) case 

fillers are much smaller than the wavelength of matrix 

fluctuations and their stiffness is significantly higher than 

the mean stiffness of the matrix in all cases. All inclusions 

in given model have the same stiffness. In all models con- 

sidered, the spatial distribution of inclusions and of matrix 

property fluctuations is random. This allows separating the 

effect of variability in the constituent properties from that 

of the spatial correlations discussed in Picu et al. (2014) . 

Homogenization of composite materials has a long his- 

tory. Reviews on this topic are presented in Nemat-Nasser 

and Hori (1999), Torquato (2002) and Dvorak (2013) . Re- 

markable results have been obtained regarding the bounds 

on the elastic moduli of such composites. These expres- 

sions are generally given in terms of the volume fraction 

of the constituents. The closest bounds for the bulk mod- 

ulus which take into account only the volume fraction 

have been derived by Hashin and Shtrikman (HS) ( Hashin 

and Shtrikman, 1962 ). A family of higher order bounds, 

which take into account statistical measures of the mi- 

crostructure geometry, have been proposed more recently 

with the purpose of reducing the separation between the 

upper and lower bounds (e.g. Beran and Molyeux, 1966; 

Silnutzer, 1972; Milton, 1981, 1982; Phan-Tien and Mil- 

ton, 1982; Quinatanilla and Torquato, 1995 ). The n -point 

bounds are written in terms of n -point microstructural 

correlation functions which define the probability that n 

points with specified relative positions are all located in a 

certain phase of the composite. Any statistical correlation 

of the microstructure can be accounted for by using these 

methods. A review of the higher order bounds and the geo- 

metric parameters required for their evaluation is provided 

in Torquato (2002) . 

The effective behavior of heterogeneous materials with 

linear elastic constituents and random microstructure has 

been studied in a number of works using continuum and 

discrete (lattice) models ( Ostoja-Starzewski, 1994; Huyse 

and Maes, 2001; Dimas et al., 2014, 2015 ). It was reported 

that the homogenized moduli of the composite depend 

weakly on the type and degree of variability in local prop- 

erties and stronger on the way the random field defining 

the fluctuations is imposed. As the variability of the ran- 

dom field defining the local material properties increases, 

the effective linear elastic moduli of the composite de- 

crease ( Huyse and Maes, 2001 ). The variance of the com- 

ponents of the stiffness tensor is similar and decreases 

with increasing the sample size ( Dimas et al, 2015 ), as sug- 

gested by the ergodic hypothesis. 

In this work we use numerical homogenization of rep- 

resentative volumes of the random composites described 

above and focus on the effective elastic–plastic behavior 

and the distribution of maximum principal stress, which 

is relevant for damage initiation. 

2. Models and methods 

Two dimensional composites are considered in this 

study. The three types of models analyzed are shown in 

Fig. 1 . Fig. 1 (a) (Type 1) shows a particulate composite 

with randomly distributed inclusions of volume fraction f . 

The level of gray in the figure indicates Young’s modu- 

lus of the various phases. The matrix is homogeneous and 

elastic–plastic with a bilinear constitutive equation charac- 

terized by moduli E e = E 1 and E p = 10 −2 E 1 for the elastic 

and plastic branches of the constitutive law (except where 

stated otherwise), respectively, and by the yield stress, σ y 1 

( σy 1 = 10 −2 E 1 ) . Inclusions are linear elastic, of modulus 

E 2 sampled from a log-normal distribution function, p ( E 2 ). 

The distribution is not truncated at large values of the 

modulus. The mean of this distribution, Ē 2 , is kept constant 

at Ē 2 = 10 E 1 , while its variance is a parameter. The second 

moment is represented by the coefficient of variation c E of 

p ( E 2 ). All components have the same Poisson ratio, ν = 0.3, 

and plane strain conditions are considered throughout. 
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