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a b s t r a c t

In this paper, the mechanical response of incompressible particle-reinforced neo-Hookean
composites (IPRNC) under general finite deformations is investigated numerically. Three-
dimensional Representative Volume Element (RVE) models containing 27 non-overlapping
identical randomly distributed spheres are created to represent neo-Hookean composites
consisting of incompressible neo-Hookean elastomeric spheres embedded within another
incompressible neo-Hookean elastomeric matrix. Four types of finite deformation (i.e., uni-
axial tension, uniaxial compression, simple shear and general biaxial deformation) are sim-
ulated using the finite element method (FEM) and the RVE models with periodic boundary
condition (PBC) enforced. The simulation results show that the overall mechanical
response of the IPRNC can be well-predicted by another simple incompressible neo-Hook-
ean model up to the deformation the FEM simulation can reach. It is also shown that the
effective shear modulus of the IPRNC can be well-predicted as a function of both particle
volume fraction and particle/matrix stiffness ratio, using the classical linear elastic estima-
tion within the limit of current FEM software.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

A fundamental problem for particle-reinforced compos-
ites (PRC) is to predict the overall mechanical behavior of
the composite based on the mechanical properties of the
constituents and the microstructure of the composites.
Guth (1945) extended Einstein’s linear estimate originally
developed for viscous fluid and proposed a second order
polynomial to predict the small strain Young’s modulus

of (rigid) particle-filled solids. Kerner (1956) designed an
averaging procedure to estimate the effective shear modu-
lus and bulk modulus of the PRC. Hill (1965) proposed a
self-consistent model to estimate the effective shear mod-
ulus of the PRC. The three-phase model developed by
Christensen and Lo (1979) gives a very good prediction of
the PRCs effective shear modulus (Segurado and Llorca,
2002). Torquato (1998) derived accurate expressions for
the bulk and shear moduli of the PRC based on a third-or-
der approximation. Although a few studies investigated
some special microstructures such as cubic arrays of
spheres (e.g., Cohen, 2004), most papers in the literature
have focused on macroscopically isotropic composites
with randomly distributed particles. Besides the direct
estimation of the effective moduli of the PRC, some rigor-
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ous bounds for the elastic properties of the PRC have been
obtained from variational principles (e.g., Hashin and
Shtrikman, 1963). Another approach to investigate the
‘‘overall’’ mechanical behavior of the PRC is to solve the
boundary value problems for a representative volume ele-
ment (RVE) model of the composite numerically (Michel
et al., 1999). Drugan and Willis (1996) showed that a small
size RVE model can predict accurately the mechanical re-
sponse of the PRC. Segurado and Llorca (2002) provided a
comprehensive numerical study of the mechanical proper-
ties of the linear elastic PRC using multi-particle RVE
models.

Although the mechanical properties of the PRC in infin-
itesimal strain have been investigated extensively, their
mechanical behavior in the finite deformation regime is
still not well-understood due to the intrinsic difficulties re-
lated to the geometrical and material nonlinearities. Hill
(1972) proposed a set of macroscopic variables for consti-
tutive modeling of composites in finite deformation. Based
on that, Ogden (1974) derived an approximate expression
for the overall bulk modulus of the PRC with second-order
isotropic compressible elastic constituents under finite
strain. Hashin (1985) studied the response of hyperelastic
PRC under hydrostatic loading. Imam et al. (1995) derived
the second order elastic field for incompressible hyperelas-
tic composites with dilute inclusions, which was then em-
ployed to estimate the overall moduli of the PRC. Although
recently several research groups have investigated hyper-
elastic composites with inclusions in two dimension
(which physically implies composites with aligned fiber
reinforcement) and some related boundary value problems
are solved analytically (e.g., deBotton et al., 2006; Guo
et al., 2008; Guo et al., 2006; Lopez-Pamies, 2010), analyt-
ical solutions for three-dimensional PRC model under gen-
eral homogeneous displacement boundary conditions are
far more difficult. Castaneda (1989) proposed a self-consis-
tent approach to predict the shear modulus of incompress-
ible particle-reinforced neo-Hookean composites (IPRNC).
Bergstrom and Boyce (1999) used the concept of strain
amplification under large strain to estimate the shear mod-
ulus of incompressible neo-Hookean composites filled
with rigid particles. Because these two models are not
based on an accurate approximation of the elastic fields,
it is not surprising to find that they don’t provide good esti-
mates of effective shear modulus of IPRNC with moderate
particle volume fractions. Recently Avazmohammadi and
Castaneda (2012) developed a tangent second-order
(TSO) method to investigate the macroscopic response of
PRC in finite deformation and an explicit formula is derived
to approximate the strain energy of incompressible neo-
Hookean composites reinforced with rigid particles.

The numerical studies of hyperelastic composites avail-
able in the literature are also mainly limited to two-dimen-
sional problems of composites with aligned fibers or voids
(e.g., Guo et al., 2008; Moraleda et al., 2007, 2009; Tang
et al., 2012a, b), though Bergstrom and Boyce (1999) used
simple 2D axisymmetric models to simulate IPRNC under
uniaxial deformation. Three-dimensional RVE modeling
in finite deformation is only investigated for single-fiber
unit cell (Guo et al., 2007). To the best of the authors’
knowledge, there is no comprehensive numerical study of

the PRC under finite deformation published in the
literature.

Because it is difficult to predict the mechanical response
of the PRC under general finite deformation theoretically
due to the related geometrical and material nonlinearities,
this study employs the numerical homogenization ap-
proach to investigate the mechanical behavior of the sim-
plest hyperelastic PRC under general finite deformation,
in which the mechanical properties of both the matrix
and the reinforcement are described by an incompressible
neo-Hookean model respectively. In this paper, three-
dimensional RVE models are created to represent the
neo-Hookean composite which consists of one incom-
pressible neo-Hookean elastomer embedded with another
randomly distributed equal-sized spherical incompressible
neo-Hookean particle reinforcement. Commercial finite
element analysis software ABAQUS is employed for the
numerical simulations of the RVE models. Periodic bound-
ary conditions (PBC) are implemented in the RVE models
when general finite deformation is applied to the RVE
models. The numerical results show that the overall
mechanical responses of the IPRNC can be well predicted
by another simple incompressible neo-Hookean model.
The simulation results also suggest that the classical linear
elastic estimation (Christensen and Lo, 1979) can be used
to predict the effective shear modulus of the IPRNC with
different particle volume fraction and different particle/
matrix stiffness ratio.

The structure of the paper is as follows: In Section 2, the
IPRNC to be investigated is described and the theoretical
basis of the numerical homogenization in finite deforma-
tion (Hill, 1972; Ogden, 1974) is also introduced. In Section
3, the RVE models are developed for numerical simulations
using finite element method (FEM) and some related issues
(e.g., isotropy of the RVE models, FEM mesh) are discussed.
The results of the RVE simulations are presented and inves-
tigated in Section 4. The effective modulus of the hyper-
elastic composites is also compared with classical linear
elastic estimation. Some concluding remarks are given in
Section 5.

2. Particle-reinforced neo-Hookean composites and
theoretical basis of numerical homogenization

First of all, some basic concepts in continuum mechan-
ics need to be introduced. For a continuum solid, the defor-
mation gradient is defined as F ¼ @x=@X, where X and x
denote the positions of a typical material point respec-
tively in the original (undeformed) and deformed configu-
ration of the solid, respectively. The mechanical behavior
of an isotropic hyperelastic material can be determined
by its strain energy function (per unit volume in the origi-
nal configuration) W ¼WðFÞ. If the material is compress-
ible, the nominal stress P can be obtained as

P ¼ @WðFÞ
@F

; Pij ¼
@W
@Fij

; ð1Þ

while for an incompressible material, it reads

P ¼ �pF�T þ @WðFÞ
@F

; ð2Þ
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