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a b s t r a c t

This paper presents a new method to indirectly determine the probability distribution
function of strength of quasibrittle structures. The method is derived within the framework
of the finite weakest link model, which indicates that the size dependence of the mean
structural strength can be calculated from the size effect on the probability distribution
of the structural strength. By considering the inversion of this model, we show that the
cumulative distribution function of structural strength can be explicitly determined from
the parameters of the mean size effect curve. The proposed method is verified by a compre-
hensive set of experiments on asphalt mixture at a low temperature, which involves tests
on both the strength histograms and the mean size effect. In the meantime, the agreement
between the predicted and experimentally measured strength histograms of asphalt mix-
ture specimens of different sizes further confirms the validity of the finite weakest link
model.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Understanding the probability distribution of structural
strength is of paramount importance for the reliability-
based design of modern engineering structures, such as
buildings, bridges, dams, aircraft, ships, etc. As generally
accepted, most engineering structures must be designed
to guard against an extremely low failure probability,
which is typically less than 10�6 (Duckett, 2005; Melchers,
1987; NKB, 1978). Evidently, it is impossible to determine
the design strength corresponding to such a low failure
probability directly from histogram testing. Therefore, we
must resort to some probabilistic models. For perfectly
ductile and brittle structures, the probabilistic models of
strength distribution are well understood. The cumulative
distribution function (cdf) of strength of ductile structures
must follow the Gaussian distribution according to the
Central Limit Theorem because the peak load of the struc-
ture can be calculated from the weighted sum of the

strengths of the material elements along the failure sur-
face. By contrast, the failure of perfectly brittle structures
is triggered by the failure of one material element whose
size is negligible compared to the structure size. According
to the infinite weakest link model, the strength cdf of brit-
tle structures must follow the Weibull distribution (Bažant
et al., 2009; Bažant and Pang, 2007; Le et al., 2011). Both
the Gaussian and Weibull distributions are two-parameter
probability distribution functions, where the statistical
parameters can be easily obtained by histogram testing
involving a relatively small number of specimens. How-
ever, this is not the case for structures made of quasibrittle
materials.

Quasibrittle materials are brittle heterogenous materi-
als exemplified by concrete, fiber composites, woven com-
posites, ceramics, rocks, etc. The salient feature of
quasibrittle structures is that the size of material inhomo-
genieties is not negligible compared to the structure size.
Recent studies focused on a particular class of quasibrittle
structures, where the peak load is reached as a
macro-crack initiates from one representative volume
element (RVE) (Bažant et al., 2009; Bažant and Pang,
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2006, 2007; Le et al., 2011; Le and Bažant, 2011). The failure
of such structures is of one of the most dangerous types
since there is no precursor of the failure. It has been shown
that this class of structures can be statistically modeled as a
chain of RVEs (Bažant et al., 2009; Bažant and Pang, 2006,
2007; Le et al., 2011). In contrast to the case of perfectly
brittle structures, this chain is not infinite because the size
of RVE is not negligible compared to the structure size. Con-
sequently, the strength cdf of each RVE must be known in
order to calculate the strength cdf of the entire structure.
Based on atomistic fracture mechanics and a statistical
multi-scale transition model, recent studies (Bažant et al.,
2009; Le et al., 2011) showed that the strength cdf of one
RVE can be approximated as a Gaussian distribution with
a Weibull distribution grafted at its left tail. The finite
weakest link model indicates that the strength cdf of quasi-
brittle structures generally consists of two segments sepa-
rated by a grafting point (Bažant et al., 2009; Bažant and
Pang, 2007; Le et al., 2011). The upper segment can be cal-
culated as a finite chain of Gaussian elements, whereas the
lower segment follows the classical two-parameter Weibull
distribution. The location of the grafting point represents
the quasibrittleness of the structure. Determining such a
type of strength distribution through histogram testing re-
quires a sufficiently large number of identical specimens,
which could be very costly for some quasibrittle materials
due to high labor costs (e.g. concrete, sandstones, etc.).

Based on the weakest link model, it has been shown
that the cdf of structural strength varies with the structure
size and geometry, which leads to an intricate size effect on
the mean structural strength (Bažant et al., 2009; Bažant
and Pang, 2007; Le et al., 2011). Therefore, it is naturally
expected that one may obtain the strength cdf from the
mean size effect analysis. In a recent paper (Le and Bažant,
2012), a mathematical model was briefly outlined to relate
the strength cdf and the mean size effect curve for quasi-
brittle structures under uniaxial tension. So far, no experi-
ments have been performed to verify such a model. In this
paper, we present a refinement of this model, which can be
applied to quasibrittle structures with a non-uniform
stress field. The model is then experimentally verified by
a comprehensive set of experiments on the asphalt mix-
ture at a low temperature.

2. Review of finite weakest link model and its
implication on mean size effect

Let us limit our attention to a class of structures where
the failure of the structure under controlled load occurs
once a macro-crack initiates from one RVE. In other words,
here the RVE is defined as the smallest material volume
whose failure triggers the failure of the entire structure.
This is different from the classical definition of RVE by
the homogenization theory (Hill, 1963). Recent discrete
element simulation showed that the auto-correlation
length of the random field of the structural strength is
approximately equal to the RVE size (Grassl and Bažant,
2009). Therefore, we could consider the RVE strength to
be an independent random variable. According to the joint
probability theorem, the failure probability of the structure
Pf can be calculated as:

1� Pf ðrNÞ ¼
YN

i¼1

1� P1ðrNsiÞ½ � ð1Þ

where P1 = failure probability of one RVE, N = number of
RVEs in the structure, rN = nominal strength = cPmax=bD
for 2D problems, Pmax = maximum load that the structure
can sustain, D = characteristic size of the structure,
b = dimension in the third (transverse) direction, c ¼ con-
stant chosen such that rN represents the maximum elastic
principal stress in the structure, si ¼ dimensionless stress
field such that rNsi is equal to the maximum elastic princi-
pal stress at the center of ith RVE.

Recent studies showed that the failure probability of
one RVE can be derived from atomistic fracture mechanics
and a statistical multi-scale transition model, where the
failure probability of a nanoscale structure can be obtained
by applying the transition rate theory to the discrete jump
of a nano-crack and the transition between the nano- and
macro-scales can be represented by a hierarchy of statisti-
cal chains and bundles (Bažant et al., 2009; Le et al., 2011).
Based on this model, it has been found that the strength cdf
of one RVE can be approximated to consist of two parts: (1)
a Weibull tail extending to a failure probability about 10�3

to 10�4, and (2) a Gaussian core covering the rest part of
the cdf. Mathematically, it can be expressed as (Bažant
et al., 2009; Bažant and Pang, 2007; Le et al., 2011):

P1ðrÞ ¼ 1� e� r=s0h im � r=s0h im ðr 6 rgrÞ ð2aÞ

P1ðrÞ ¼ Pgr þ
rf

dG

ffiffiffiffiffiffiffi
2p
p

Z r

rgr

e�ðr
0�lGÞ

2=2d2
G dr ðr > rgrÞ ð2bÞ

where r = maximum elastic principal stress at the center
of the RVE, m = Weibull modulus, s0 = scale parameter of
the Weibull tail, xh i ¼maxðx;0Þ;lG and dG are the mean
and standard deviation of the Gaussian core if considered
extended to �1; rf is a scaling parameter required to nor-
malize the grafted cdf such that P1ð1Þ ¼ 1; Pgr = grafting
probability = 1� exp½�ðrgr=s0Þm� � ðrgr=s0Þm, and rgr ¼
grafting stress. Finally, continuity of the probability density
function (pdf) at the grafting point requires that
ðdP1=drÞjrþgr

¼ ðdP1=drÞjr�gr
. Although there are six statisti-

cal parameters in total that define the strength cdf of one
RVE (i.e. m; s0;lG; dG; rf and rgr), due to the normalization
requirement and the continuity of pdf at rgr , only four of
them are actually independent.

Substituting Eqs. (2a) and (2b) into Eq. (1), we can cal-
culate the strength distribution of the entire structure. It is
clear that due to the grafted probability distribution of RVE
strength, the resulting cdf of the structural strength would
also consist of two parts. Below the grafting stress, the
strength cdf follows the Weibull distribution, whereas
the strength cdf above the grafting stress follows a chain
of Gaussian elements. As the structure size increases, the
Weibull portion of the cdf would increase and eventually
occupy the entire cdf.

Knowing the strength cdf of the entire structure, we can
calculate the mean structural strength �rN:

�rN ¼
Z 1

0
rNdPf ¼

Z 1

0
1� Pf ðrNÞ
� �

drN ð3Þ
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