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a b s t r a c t 

A systematic and mechanistic connection between granular materials’ macroscopic and grain level be- 

haviors is developed for monodisperse systems of spherical elastic particles under die compaction. The 

Granular Micromechanics Approach (GMA) with static assumption is used to derive the stiffness tensor 

of transversely isotropic materials, from the average behavior of particle-particle interactions in all dif- 

ferent directions at the microscale. Two particle-scale directional density distribution functions, namely 

the directional distribution of a combined mechano-geometrical property and the directional distribution 

of a purely geometrical property, are proposed and parametrized by five independent parameters. Five 

independent components of the symmetrized tangent stiffness tensor are also determined from discrete 

particle mechanics (PMA) calculations of nine perturbations around points of the loading path. Finally, 

optimal values for these five GMA parameters were obtained by minimizing the error between PMA cal- 

culations and GMA closed-form predictions of stiffness tensor during the compaction process. The results 

show that GMA with static assumption is effective at capturing the anisotropic evolution of microstruc- 

ture during loading, even without describing contacts independently but rather accounting for them in 

an average sense. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The macroscopic, or global, mechanical behavior of materials is 

a direct function of their microstructure and associated microme- 

chanical characteristics [1] . This is most clear when dealing with 

granular materials where the microstructure is composed of grains 

and, therefore, their arrangement clearly affects the macroscopic 

behavior. Modeling the behavior of these materials using macro- 

scopic tensorial continuum mechanics results in an obvious ne- 

glect of the effects of the granular microstructure and its evolu- 

tion, as well as of micro-mechanical phenomena taking place at 

grain scale, on the macroscopic mechanical response. 

In order to incorporate microstructural properties of the ma- 

terial into its global behavior, many different schemes working 

in different spatial scales are available. In the broadest sense, all 

models can be categorized into two distinct groups, namely (i) 

discrete models where, according to the length scale being re- 

solved, grains/particles/molecules/atoms are regarded as material’s 
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building blocks (e.g., atomic models [2,3] , molecular-dynamics 

[4,5] , bead-spring models [6] , dynamic discrete element methods 

[7,8] and quasi-static particle mechanics approaches [9–13] ); (ii) 

continuum models where the material point is assumed to be a 

homogeneous continuum body whose behavior is interpreted in 

terms of tensorial quantities such as stress, strain, and stiffness 

[14–16] . 

Discrete models in principle can be used to derive highly ac- 

curate results with high fidelity. Moreover, discrete analysis has 

been shown to be an effective approach for modeling material sys- 

tems with a discrete nature [17] , even with imperfections [18] , and 

even result in reduced computational demand. These models, how- 

ever, rely upon correctly attainable details of material microstruc- 

ture and of micro-mechanical phenomena. Continuum models, on 

the other hand, derive material response without exact consider- 

ation of microstructure and therefore, lack a connection between 

macroscopic observable behavior and its microscopic roots. 

The Granular Micromechanics Approach (GMA) provides a ro- 

bust framework for connecting these two groups of models and 

bridges the gap between them. This is achieved by deriving such 

continuum macroscopic response from the study of average be- 

havior of particle-particle interactions in all different directions at 

the microscale [19–22] . In doing so, GMA delivers the most cru- 
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cial advantages of discrete models, i.e., it incorporates material’s 

micromechanical features, microstructural effects, and load-path 

dependent anisotropic evolution of microstructure, while avoiding 

the comparatively large computational cost associated with identi- 

fying and following each and every particle as well as their con- 

tacts. It is worth noting that grain-pair interactions in GMA do not 

represent the behavior of two isolated grains, but rather, that of 

a grain-pair embedded in the granular microstructure. The global 

anisotropic continuum behavior of the granular material is then 

derived from the effective and directional behavior of grain-pair 

interactions. Therefore, the most critical element in deriving a pre- 

dictive GMA model of any given material is formulating force- 

displacement relationships for grain-pair interactions. 

In this communication, we address the issue of formulating 

particle-particle interactions, and their anisotropic evolution, dur- 

ing die compaction of a monodisperse system of spherical elas- 

tic particles. We focus on developing a systematic and mechanis- 

tic approach for identifying these relationships from discrete par- 

ticle mechanics simulations of the granular system. The proposed 

methodology, therefore, effectively connects discrete particle me- 

chanics to continuum granular micromechanics. Next, we briefly 

describe the GMA with static assumption adopted in this work. 

2. GMA with static assumption 

The GMA can take two general approaches, namely the method 

with a kinematic constraint and that with a static constraint. The 

approach with a kinematic constraint is based on the assump- 

tion that inter-particle displacements δi ∈ V can be derived as the 

projection of macroscopic strain tensor εi j ∈ V 2 on the particle- 

particle relative position l i ∈ V, i.e., δi = εi j l j . On the other hand, 

the approach with static constraint assumes a relationship be- 

tween macroscopic stress tensor σi j ∈ V 2 and inter-particle force 

vectors f i ∈ V . Here V is a three-dimensional real vector space. 

The GMA with static assumption enforces the kinematic con- 

straint in a weak sense, that is 

εpq = arg min 

εpq ∈V 2 

N c ∑ 

α=1 

∥∥δα
i − εi j l 

α
j 

∥∥ (1) 

where N c denotes the total number of contacts α in the represen- 

tative volume element. Therefore, GMA with static constraint min- 

imizes the sum, over all contacts, of the residual differences be- 

tween the inter-particle displacement and the projection of macro- 

scopic strain tensor on the vector joining centroids of the particles 

forming pair-contacts. Furthermore, the Principle of Virtual Work 

stating the equality of macroscopic strain energy density and the 

volume average of inter-particle energies of all contacts is enforced 

W = σi j εi j = 

1 

V 

N c ∑ 

α=1 

f αi δ
α
i (2) 

where V is the volume of the representative volume element. Sub- 

stituting (1) into (2) yields the following relationship between 

macroscopic stress tensor and microscopic inter-particle forces 

f i = σi j N 

−1 
jq 

l q ; with N i j = 

1 

V 

N c ∑ 

α=1 

l αi l αj (3) 

where N i j ∈ V 2 is the second rank fabric tensor. The above relation- 

ship is commonly known as the static constraint, hence the name 

of the method. With some algebraic manipulation, the following 

expressions for macroscopic compliance, S i jkl ∈ V 4 , and strain, εi j ∈ 

V 2 , tensors are obtained 

S i jkl = 

∂εi j 

∂σkl 

= N 

−1 
jp 

N 

−1 
lq 

1 

V 

N c ∑ 

α=1 

s αik l 
α
p l 

α
q (4a) 

Fig. 1. Two grains in contact and the local coordinate system along with the global 

Cartesian and spherical coordinate systems. 

d εi j = S i jkl d σkl (4b) 

where s α
i j 

∈ V 2 is the local compliance tensor connecting inter- 

particle force and displacement of contact α, that is δα
i 

= s α
i j 

f α
j 

. For 

a more detailed description of the above formulation see [23] . 

For convenience, the inter-particle force-displacement relation- 

ship f α
i 
(δα

j 
) can be formulated in a local coordinate system defined 

by the following three mutually orthogonal axes: one normal axis 

n α
i 

in the direction of the vector joining the centroids of the parti- 

cles, and two tangential axes s α
i 

and t α
i 

(see Fig. 1 ). Therefore, the 

microscopic constitutive relationship can be expressed on the local 

coordinate systems as follows { 

δα
n 

δα
s 

δα
t 

} 

= 

[ 

s αn 0 0 

0 s αs 0 

0 0 s αt 

] { 

f αn 
f αs 
f αt 

} 

(5) 

where the local compliance tensor is assumed to be symmetric 

by neglecting cross-coupling terms and thus s αn = 1 /k αn , s 
α
s = 1 /k αs , 

and s αt = 1 /k αt are the reciprocals of the local stiffness coefficients. 

2.1. Integral form of the formulation 

It bears emphasis that the relationships given in Eqs. (1) –(4) 

are in summation form over all pair-interactions within the gran- 

ular system that constitutes the representative volume element of 

interest. However, both the inter-particle force-displacement rela- 

tionships and geometrical properties, such as the relative distance 

between interacting particles, depend strongly on direction with 

respect to a reference frame. It is then convenient to derive an 

integral form of the constitutive relationship by defining two 

particle-scale directional density distribution functions, namely 

the directional distribution of a combined mechano-geometrical 

property and the directional distribution of a purely geometrical 

property [24] . In this formulation, for convenience, a global spher- 

ical coordinate system is utilized wherein θ , φ, and ρ denote the 

polar zenith angle, the azimuth angle, and the radial coordinate, 

respectively (see Fig. 1 ). Specifically, for defining the fabric tensor 

N ij in integral form, a directional distribution ξ ′ ( θ , φ) of the 

particle-particle relative distance squared, i.e., of || l || 2 , is proposed 
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