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a b s t r a c t 

This article presents an a priori upper bound estimate for the steady-state temperature distribution in a 

body with any temperature-dependent thermal conductivity, generalizing a previous result (Gama et al., 

2013) [1]. The discussion is carried out assuming a large class of nonlinear boundary conditions (for 

instance representing thermal radiant interchange). These estimates consist of a powerful tool that may 

avoid an expensive numerical simulation of a nonlinear heat transfer problem, whenever it suffices to 

know the highest temperature. In these cases the methodology proposed in this work is more effective 

than the usual approximations that assume thermal conductivities and heat sources as constants. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The conduction heat transfer phenomenon consists of a classical 

issue [2–4] which, in the last years, are becoming each more time 

interesting due to the models arising from new engineering appli- 

cations, that require more precise descriptions, in general nonlin- 

ear and, consequently, mathematically more complexes. 

Problems involving temperature-dependent thermal conduc- 

tivity are increasingly being studied due to the crescent use of 

materials which present strong dependence between the thermal 

conductivity and the temperature as well as due to the search of 

more realistic results. Such fact is observed in recent papers as, 

for instance, in references [5–9] where the relationship between 

the thermal conductivity and the temperature is the main subject, 

in references [10–12] where some simulations are carried out and 

in references [13] , where the Kirchhoff transformation is the main 

subject. 

In reference [15] it was presented an a priori upper bound es- 

timate for conduction heat transfer problems, with linear bound- 

ary conditions, in which the thermal conductivity is assumed to 

be a constant. In reference [1] it is presented an a priori upper 

bound estimate for temperature-dependent conduction heat trans- 

fer problems, with linear boundary conditions, in which the ther- 
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mal conductivity is approximated by 

k = 

{
k 1 = constant for T 0 < T 
k 2 = constant for T 0 ≥ T 

(1) 

in which T 0 is a conveniently chosen constant. The main objective 

of this work is to provide an upper bound estimate, suitable for a 

large class of nonlinear steady-state heat transfer problems (which 

includes all the cases considered in references [1,3] ), adding the 

following improvements: 

• Instead of [1] , this work admits a more general representation 

for k ; 

• the boundary conditions need not to be linear; 

• the source term need not to be bounded, provided it belongs to 

L 2 ; 

• it is presented a general closed-form expression for the Kirch- 

hoff transformation. 

Eq. (1) represents an interesting, but limited, first approxima- 

tion for problems with temperature-dependent thermal conductiv- 

ity. 

Let us begin with the mathematical description below [1,3,4] 

d i v ( kgrad T ) + 

. 
q = 0 in �

−kgradT · n = h (T − T ∞ 

) on ∂� (2) 

which describes the classical steady-state conduction heat trans- 

fer process in a rigid and opaque body at rest, represented by 

the bounded open set � with boundary ∂�, subjected to a linear 

boundary condition [2,15] . In problem (2) n is the unit outward 
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Fig. 1. Thermal conductivity of the copper at 1 atm. 

normal, ˙ q is the internal heat generation (per unit time and unit 

volume), k is the thermal conductivity, T ∞ 

is the temperature of 

the environment, h is the convection heat transfer coefficient and 

T is the (unknown) temperature. 

In this paper we consider the following generalization of 

Eq. (1) 

k = 

ˆ k ( T ) = 

{ 

k 1 for T 1 ≥ T 
k i for T i ≥ T > T i −1 , i = 2 , 3 , 4 , ..., N − 1 

k N for ∞ > T > T N−1 

(3) 

in which k 1 , k 2 ,..., k N and T 1 , T 2 ,..., T N − 1 are positive constants (the 

temperatures assumed to be absolute ones). Eq. (3) is always an 

adequate representation and has no limit of accuracy. In addition, 

provides closed-form formulas for both the Kirchhoff transforma- 

tion and its inverse. 

An interesting comparison between Eqs. (1) and (3) takes place 

when it is considered the thermal conductivity of the copper as a 

function of the temperature [14] as presented in Fig. 1 below. 

In addition, instead of problem (2) , we consider the following 

one (more general) 

di v ( kgrad T ) + 

. 
q = 0 in �

−k grad T · n = F on ∂�, F = ̂

 F ( T , x ) (4) 

in which, for any x ∈ ∂�, there exists a positive constant δ such 

that 

∂F 

∂T 
≥ δ > 0 (5) 

The function F could be given, for instance, by 

a ) F = h (T − T ∞ 

) Newton law of cooling (convection) 
b) F = σ T 4 − s Black surface with external radiant source 

c) F = h (T − T ∞ 

) + σ T 4 − s Convection and radiation 

(6) 

2. The Kirchhoff transformation 

The Kirchhoff transformation may be defined as follows [3] 

ω = ˆ ω ( T ) = 

∫ T 

0 

ˆ k ( ξ ) dξ (7) 

Therefore 

grad ω = k grad T (8) 

and, hence, 

di v ( grad ω ) + 

˙ q = 0 in � (9) 

Eqs. (3) and (7) yield (after some calculations) 

ω = ˆ ω ( T ) = 

1 

2 

( 

( k 1 + k N ) T + 

N ∑ 

i =2 

( k i − k i −1 ) ( | T − T i −1 | − T i −1 ) 

) 

(10) 

in which T N > T N − 1 > T N − 2 > ... > T 3 > T 2 > T 1 ≥ T 0 = 0. 

Defining the (nonnegative) constants ω 1 , ω 2 , ω 3 , …ω N − 2 , ω N − 1 

as follows 

ω i = 

i ∑ 

j=1 

k j 
(
T j − T j−1 

)
= ω i −1 + k i ( T i − T i −1 ) , 

i = 1 , 2 , 3 , ..., N − 1 , with ω 0 = 0 

(11) 

the inverse of the above Kirchhoff transformation can be easily ob- 

tained from the closed-form formula below 

T = 

ˆ T ( ω ) 

= 

1 

2 

( (
1 

k 1 
+ 

1 

k N 

)
ω + 

N ∑ 

i =2 

(
1 

k i 
− 1 

k i −1 

)
( | ω − ω i −1 | − ω i −1 ) 

) 

(12) 

The positiveness of the thermal conductivity ensures that ω is 

an increasing function of T , while T is an increasing function of ω. 

Eqs. (10) –(12) require a minimum of computational effort, since 

they involve only linear functions and “absolute value of”. There is 

no exp ( αT ), exp ( βω), T α , ω 

α , sines, …

In addition, the above functional relationships have no math- 

ematical limitations. In other words, for any given T ∈ ( − ∞ , ∞ ) 

Eq. (10) provides one, and only one, ω which, inserted in (12) , re- 

covers the value of T originally inserted in (10) . For instance, such 

feature is not found when k is assumed a linear function of the 

temperature. 

3. Estimating an upper bound for ω 

The resulting problem, in terms of ω, is given by 

div ( grad ω ) + 

. 
q = 0 in �

−( grad ω ) · n = G on ∂�, G = 

ˆ G ( ω, x ) on ∂�

G = 

ˆ G ( ω, x ) 

= 

ˆ F 

( (
1 

2 k 1 
+ 

1 

2 k N 

)
ω + 

N ∑ 

i =2 

(
1 

2 k i 
− 1 

2 k i −1 

)
( | ω − ω i −1 | − ω i −1 ) , x 

) 

(13) 

At this point, let us introduce a field 
 (there exist infinitely 

many) in order to satisfy the inequality 

di v (grad 
) + 

. 

Q 

≤ 0 in � (14) 

in which 

˙ Q must be such that 
. 

Q 

≥ . 
q in � (15) 

Thus, 

di v [ grad ( ω − 
) ] ≥ 0 in �
−grad ( ω − 
) · n = G + grad 
 · n on ∂�

(16) 

Since 

di v [ grad ( ω − 
) ] ≥ 0 in � (17) 

the divergence theorem, for any subset �⊆� with boundary ∂�, 

enables us to write ∫ 
∂�

grad ( ω − 
) · n dS ≥ 0 (18) 
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