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a b s t r a c t 

We model an artery with perivascular soft tissue as a uniform cylindrical membrane tube surrounded by 

a flexible substrate with distributed stiffness. We derive the equations of motion of the arterial model, 

and obtain evolution equation derived in the long wavelength limit from the general equations of motion. 

We analyze the stability of axisymmetric perturbations at the bifurcation state taking into the considera- 

tion of surrounding soft tissue stiffness and constant axial stretch. We observe that the surrounding soft 

tissues progressively reduce the domain of real valued solutions with increasing constant axial stretch. 

The results suggest that the stationary solitary wave solution is unstable. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Modeling of aneurysms, a localized bulge in the human circu- 

latory system, and controlling its growth present significant chal- 

lenges. Mathematically, an aneurysm is a bifurcation of solution of 

an arterial tube under uniform pressurization and stretching. Such 

bifurcations are a type of instability caused by dilation and weak- 

ening of biological soft tissues. In an elastomeric tube under pres- 

surization, there can exists a local maximum in the pressure ver- 

sus stretch curve, which is known as the limit-point instability of 

the elastomer material model [1,2] . A change in the natural global 

shape is referred to as geometric instability or bifurcation [3,4] . 

Many researchers have studied bifurcations and analyzed vari- 

ous instability modes in the cylindrical membrane tube [5–10] . The 

solution at bifurcation exhibits a radial protrusion up to a critical 

point beyond which the protrusion front propagates (broadens) in 

both directions of the tube. The competition between radial ex- 

pansion and axial propagation plays an important role in evolution 

of aneurysm [11,12] . The growth of bifurcation of the fluid-filled 

membrane tube can be described through an evolution equation. 

The evolution equation of a model of fluid-filled membrane tube 

about the bifurcation state is a Boussinesq equation with an un- 

stable stationary solitary wave solution [13,14] . Interestingly, con- 

sideration of fluid inertia of an inviscid fluid decreases the growth 

rate of the unstable mode [14] . Il’Ichev et al. [15] found that an 
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arterial tube requires high pressure for onset of bifurcation when 

there is no imperfection in the membrane tube. 

Modeling and study of the effect of perivascular tissues on an 

arterial tube has not been considered in most of the previous stud- 

ies. Aneurysm formation and interaction with surrounding tissues 

have been modeled in different ways [16–18] . Varatharajan et al. 

[19] , have observed that a neo-Hookean arterial model exhibits a 

delay in the onset of bifurcation and a subsequent subcritical jump 

in the circular distension at bifurcation with increasing perivascu- 

lar substrate stiffness. Further, an anisotropic neo-Hookean arterial 

model can change the subcritical jump to a supercritical jump. 

An effective model considering the properties of the arterial 

tube with surrounding soft tissues remains unexplored. We study 

the spectral stability of a local bulge in the perivascular arterial 

tube to understand the effect of surrounding soft tissues as a con- 

tinuation of previous work [19] . 

In this article, the equations of motion of a perivascular arte- 

rial model are derived in Section 2 . An evolution equation and its 

solution are derived in the long wavelength limit from the general 

equations of motion in Section 3 . In Section 4 , the effect of stiff- 

ness of the surrounding soft tissues on the arterial tube and its 

spectral stability have been analyzed. 

2. Kinematics of deformation 

Fig. 1 shows the schematic representation of an aorta with 

surrounding soft tissues. The aorta is considered to be a ho- 

mogeneous, prestressed hyperelastic cylindrical membrane tube 
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Fig. 1. Schematic representation of aorta with surrounding soft tissues. 

with the reference and deformed configurations as ( ̃  R , ̃  �, ̃  Z ) and 

( ̃  r , ̃  θ, ̃  z ) , respectively. We assume that the inflation is axisymmet- 

ric, and hence, the deformation gradient for cylindrical tube is 

only in the principle directions which are defined by λθ = 

˜ r ˜ R 
, λz = √ ˜ r ′ 2 + ̃

 z ′ 2 , λr = 

˜ h ˜ H 
. Here, ( ̃  H ) ̃  h is the thickness of the (undeformed) 

deformed cylindrical membrane tube and ( · ) ′ is d 

d ̃  Z 
. The strain ten- 

sor invariants of the right Cauchy-Green deformation tensor are 

I 1 = λ2 
θ

+ λ2 
z + λ2 

r , I 2 = 

1 

λ2 
θ

+ 

1 

λ2 
z 

+ 

1 

λ2 
r 

and I 3 ≡ λθλz λr = 1 . 

The kinetic energy is given by 

T = 2 π˜ R ̃

 H 

∫ 
˜ L 

1 

2 ̃

 ρ( ̇ ˜ r 
2 + 

˙ ˜ z 
2 
) d ̃  Z , (1) 

where ˜ ρ is the density of the material, “overdot” is d 
d ̃ t 

, and ̃

 L is the 

length of the cylinder. The strain energy for the cylindrical mem- 

brane is given by 

˜ U s = 2 π˜ R ̃

 H 

∫ 
˜ L 

̂ W d ̃  Z , (2) 

where ̂ W (λθ , λz , λr ) ≡ ˜ W (λθ , λz ) (using incompressibility prop- 

erty). We consider the neo-Hookean strain energy density function ˜ W = 

μ
2 [ (I 1 − 3) ] , where μ> 0 is the shear modulus [20,21] . 

The potential energy of the inflating fluid is given by ˜ U g = 

−˜ P g π
∫ ˜ L ̃

 r 2 ˜ z ′ d ̃  Z , ˜ P g is the ideal fluid pressure which is inside the 

membrane tube. The pressure due to the elastic substrate is given 

by ̃  P f = ̃

 k ̃  w , where ̃  k is the linear stiffness of the substrate and ˜ w = ˜ r − ˜ R . The transmural pressure ˜ P d , can be obtained as ˜ P g − ˜ P f = ̃

 P d . 

Then, ˜ P g = ̃

 k 
(̃

 r − ˜ R 
)

+ 

˜ H ˜ R 

˜ W λθ
λθ λz 

. The strain energy of elastic substrate 

[22] is 

˜ U f = π˜ k 

∫ 
˜ L 

( ̃  r − ˜ R ) 2 ˜ r ̃  z ′ d ̃  Z . (3) 

Here, energy densities are defined over per unit volume in the ref- 

erence configuration. 

Extremizing the variational integral of the Lagrangian L = T −
( ̃  U g + ̃

 P g + ̃

 U f ) gives the equations of motion as 

˜ ρ ¨̃
 r = 

( ˜ W λz ̃
 r ′ 

λz 

)′ 
−

˜ W λθ˜ R 

+ 

˜ P g ˜ R ̃

 H ̃

 r ̃  z ′ −
˜ k ˜ R ̃

 H 

(̃
 r − ˜ R 

)̃
 r ̃  z ′ −

˜ k 

2 ̃

 R ̃

 H 

(̃
 r − ˜ R 

)2 ˜ z ′ , 

˜ ρ ¨̃
 z = 

( ˜ W λz ̃
 z ′ 

λz 

)′ 
−

˜ P g ˜ R ̃

 H ̃

 r ̃  r ′ + 

˜ k ˜ R ̃

 H 

(̃
 r − ˜ R 

)̃
 r ̃  r ′ + 

˜ k 

2 ̃

 R ̃

 H 

(̃
 r − ˜ R 

)2 ˜ r ′ , 

where ˜ W λθ
= 

∂ ̃  W 

∂λθ
, and 

˜ W λz 
= 

∂ ̃  W 

∂λz 
. 

The expression for fluid pressure which cause the bifurcation 

can be derived from the conservation of mass and the linear mo- 

mentum equations [14,23] . The density of the fluid is ˜ ρ f (constant), 

velocity of the fluid is ˜ v f , and the viscosity is neglected [24] . The 

equation of mass conservation per unit area A = π˜ r 2 may be given 

by 

∂ ̃  r 

∂ ̃  t 
+ 

˜ v f 
∂ ̃  r 

∂ ̃  z 
+ ̃

 r 

2 

∂ ̃  v f 
∂ ̃  z 

= 0 . (4) 

From the linear momentum, we have 

∂ ̃  v f 
∂ ̃  t 

+ 

˜ v f 
∂ ̃  v f 
∂ ̃  z 

+ 

1 ˜ ρ f 

∂ ̃  P g 

∂ ̃  z 
= 0 . (5) 

Suppose that ξ ( ̃  z , ̃  t ) is a dynamical variable and let the fixed po- 

sition ̃

 z in the spatial coordinate to material coordinate ˜ Z be rep- 

resented as ˜ z = ̃

 z ( ̃  Z , ̃  t ) . The derivatives of spatial coordinates be- 

comes 

∂ξ ( ̃  z , ̃  t ) 

∂ ̃  z 
= 

1 ˜ z ′ 
∂ξ ( ̃  z , ̃  t ) 

∂ ̃  Z 
(6) 

∂ξ ( ̃  z , ̃  t ) 

∂ ̃  t 
= 

1 ˜ z ′ 

(˜ z ′ ∂ξ ( ̃  Z , ̃  t ) 

∂ ̃  t 
− ∂ξ ( ̃  Z , ̃  t ) 

∂ ̃  Z 
˙ ˜ z 

)
. (7) 

For dimensionless variables, we consider ˜ z → ̃

 R z, ̃  r → ˜ R r, ˜ Z → ̃

 R Z, ˜ H → ̃

 R H, 
μ˜ ρ f 

→ ν2 , ̃  t → 

˜ R 
ν t, ̃  v f → νv , ˜ P g → μP g , ̃

 k → 

μ˜ R 
K, 

˜ ρ˜ ρ f 
→ ρ. Applying the transformations, (6) and (7) in (4) and 

(5) ( H is taken as unity), we have the equations of motion 

ρ r̈ = 

(
W λz 

λz 
r ′ 
)′ 

− W λθ
+ P g rz ′ − K(r − 1) rz ′ − K 

2 

(r − 1) 2 z ′ (8) 

ρ z̈ = 

(
W λz 

λz 
z ′ 
)′ 

− P g r r 
′ + K(r − 1) r r ′ + 

K 

2 

(r − 1) 2 r ′ (9) 

˙ r z ′ − r ′ ˙ z + v r ′ + 

r 

2 

v ′ = 0 (10) 

˙ v z ′ − v ′ ˙ z + vv ′ + P ′ g = 0 (11) 

3. Evolution equation and its solution 

Since the exact solution of the full nonlinear system (8) –(11) is 

not known, a perturbation method has been applied to analyze the 

solution. We consider the multiple scale expansion [13,14] to de- 

rive evolution equation using the assumption of long wavelength 

limit from the general equations of motion (8) –(11) . We perturb 

uniform cylindrical tube to cylindrical tube with bulging. The strain 

energy density W ( λθ , λz ) is an analytic function and can be ex- 

panded using Taylor’s series. The dispersion relation of the sys- 

tem (8) –(11) may be represented in the long wavelength limit as 

c = C 0 + C 1 k 
2 + C 2 k 

4 + . . . , where C 0 , C 1 , C 2 , . . . are appropriate co- 

efficients in the expansion, c ∈ R is the wave speed, and k > 0 is 

the wave number. Assuming that the fluid is stationary before the 

propagation of the disturbance, C 0 = 0 . 

Fu et al. [25] found that the wave speed of the slowest wave 

can be determined by c 2 ∼ ω ∼ (r ∞ 

− r 0 ) if v f∞ 

= 0 , where ω is 

the frequency, r ∞ 

is radius of the membrane tube at infinity, r 0 
is radius at bifurcation and v f ∞ 

is velocity of the fluid at infinity. 

In a long wavelength limit, one may express k 2 = ες 

2 . Hence, the 

long spatial variable and slow time variable can be assumed as ζ = 

ε1 / 2 Z and τ = εt, respectively [13] . It has been also observed that 

the ratio of radial and axial displacements is O ( 
√ 

ε) [6,13,26] . 
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