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a b s t r a c t 

In this paper we assess, using finite element calculations performed with ABAQUS/Explicit, the influence 

of porosity in the development of necking instabilities in flat metallic samples subjected to dynamic ten- 

sion. The mechanical behaviour of the material is described with the Gurson–Tvergaard–Needleman [6, 

22, 23] constitutive model pre-implemented in the finite element code. The novelty of our methodol- 

ogy is that we have included in the gauge of the specimen various non-uniform distributions of initial 

porosity which, in all cases, keep constant the average porosity in the whole sample. This has been car- 

ried out assigning random values of initial porosity (within specified bounds) to some nodes and zero 

to the others. Therefore, the larger the percentage of nodes with non-zero initial porosity, the smaller 

their initial value of porosity. The goal is to provide an idealized modelling of the distributions of void 

nucleating particles which in many structural metals nucleate early in the deformation process and lead 

to material porosity. The key point of this paper is that, following this methodology, we reproduce the 

experimentally-observed asymmetric-growth of the pair of necking bands which define the localization 

process in flat tensile samples subjected to dynamic loading [25]. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The study of dynamic necking instabilities which trigger failure 

of metallic (ductile) samples subjected to impact tensile loading 

has focussed the efforts of many researchers over the last 80 years. 

The experimental works of Mann [12,13] in the 30s, and Clark and 

co-workers [3,4] in the 40s, were among the first papers in this 

topic. These authors performed tension tests using cylindrical spec- 

imens of different materials for impact velocities up to 100 m/s, 

and showed that the location of the neck in the sample, and thus 

the final fracture, was dependent on the applied velocity. This cor- 

relation between necking/fracture location and impact velocity was 

rationalized using the theory of plastic strain propagation that had 

just been developed by Von-Kármán [26] . It was concluded that 

the intervention of stress waves in the sample, generated due to 

the application of a sudden impact to a specimen at rest, yields 

severe strain gradients in the sample (spatial and temporal) which 

determine the position where the fracture occurs. Post-mortem ex- 

amination of the specimens revealed considerable ductility inside 
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the neck for all materials and velocities that these authors tested, 

the final fracture showing a deep cup and cone which were more 

acute as the impact velocity was increased. Similar experimental 

observations have been reported in many other studies in which 

metallic cylindrical bars were tested dynamically, see for instance 

the recent papers of Rittel and co-workers [17,18] . 

Since the 90s of previous century, using flat samples instead 

of round bars in the dynamic tensile testing of metallic materials 

has become a common practice. The main reason is the interest 

of the automotive industry in the mechanical characterization of 

metallic sheets used to build crashworthiness structures [2] . Us- 

ing high speed servo-hydraulic machines, experiments in metallic 

sheets can be performed for velocities up to 20 m/s, and strain 

rates up to 10 3 s −1 . The failure of the sample is preceded by 

the formation of a pair of necking bands which are aligned with 

the two directions of zero extension contained in the plane of the 

specimen [7] . One of these bands grows faster than the other, lead- 

ing to the formation of a single crack inclined 54.7 ° (if the material 

is isotropic) with respect to the loading direction. 

Nevertheless, to the authors’ knowledge, most of the attempts 

carried out so far to simulate numerically the tensile behaviour of 

flat samples subjected to dynamic loading predict that, contrary 

to the experimental observations, the growth rate of the pair of 
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necking bands which form the localization process is largely sim- 

ilar [9,11,15,16,25] . It seems that, if the material is isotropic and 

homogeneous, and the boundary conditions ensure that the stress 

state in the sample is uniaxial until localization starts, there is 

not a perturbation in the numerical model that could lead to the 

asymmetric growth of the two bands. The mechanical perturba- 

tions coming from the propagation of waves within the specimen, 

and the numerical perturbations coming from the discretization of 

the work piece do not seem to produce an important difference in 

the rate of development of the necking bands. However, in some 

works, geometric perturbations have been included in the spec- 

imen model to trigger the asymmetric grow rate of the necking 

bands [14] . In this paper we propose a different approach, and de- 

velop a simple finite element model which, including non-uniform 

distributions of porosity in the specimen material, allows to repro- 

duce the experimentally-observed asymmetric-growth of the pair 

of necking bands which define the localization process in flat ten- 

sile samples subjected to dynamic loading. 

2. Constitutive framework 

The mechanical behaviour of the material is described us- 

ing the Gurson–Tvergaard–Needleman (GTN) constitutive model 

[6,22,23] pre-implemented in ABAQUS/Explicit [20] . For the sake 

of clarity, the main features of the model are briefly presented in 

this section. 

The flow potential has the form: 
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(
σe 

σy 

)2 
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where the effective Mises stress, σ e , and the hydrostatic pressure, 

σ h , are defined by: 

σe = 

√ 

3 

2 

s : s ; σh = 
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σ : 1 ; s = σ − σh : 1 (2) 

where σ is the macroscopic Cauchy stress tensor, s is its deviatoric 

part, and 1 is the unit second order tensor. 

Moreover, σ y is the flow strength of the fully dense matrix ma- 

terial described in the present work by the following power-type 

relation [21] : 
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where ε̄ p = 

∫ t 
0 

˙ ε̄ p ( τ ) dτ and 

˙ ε̄ p are the effective plastic strain and 

the effective plastic strain rate in the matrix material, respectively. 

Moreover, σ 0 , n and m are material parameters, and ε0 and ˙ ε 0 
are the reference strain and strain rate, respectively. Note that, for 

the sake of simplicity, the temperature dependence of the flow 

strength is not considered. 

In Eq. (1) , q 1 and q 2 are material parameters, and the function 

f ∗ = f ∗( f ) , where f is the void volume fraction, is given by: 

f ∗ = 
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f if f < f c 

f c + 

( f u − f c ) ( f − f c ) (
f f − f c 

) if f c � f � f f 

f u if f > f u 

(4) 

where f c is the void volume fraction at which voids coalesce, f f is 

the void volume fraction at final fracture of the material and f u = 

1 /q 1 is the ultimate void volume fraction. 

The rate of deformation tensor is taken to be the sum of an 

elastic part, d e , and a plastic part, d p , as follows: 

d = d 

e + d 

p (5) 

Table 1 

Material parameters used in the finite element calculations 

[21] . VVF stands for void volume fraction (porosity). 

Symbol Property and units Value 

ρ0 Initial density (kg/m 

3 ) 7600 

G Elastic shear modulus (GPa), Eq. (7) 26.9 

K Bulk modulus (GPa), Eq. (7) 58.3 

q 1 Material parameter, Eq. (1) 1.25 

q 2 Material parameter, Eq. (1) 1.0 

σ 0 Reference yield stress (MPa), Eq. (3) 300 

n Strain hardening sensitivity, Eq. (3) 0.1 

m Strain rate sensitivity, Eq. (3) 0.01 

ε0 Reference strain, Eq. (3) 0.00429 

˙ ε 0 Reference strain rate (s −1 ), Eq. (3) 10 0 0 

f 0 Average value of initial VVF 0.01 

f c VVF at which voids coalesce, Eq. (4) 0.12 

f f VVF at final fracture, Eq. (4) 0.25 

f u Ultimate VVF, Eq. (4) 0.8 

where the elastic part is related to the rate of the stress by the 

following hypo-elastic law: 

˙ σ = C : d 

e = C : ( d − d 

p ) (6) 

with 

˙ σ being the objective stress rate (it corresponds to the Green–

Naghdi derivative in ABAQUS/Explicit [20] ) and C being the tensor 

of isotropic elastic moduli given by: 

C = 2 G I 
′ + K1 � 1 (7) 

where G is the elastic shear modulus, K is the bulk modulus and I 
′ 

is the unit deviatoric fourth order tensor. 

The plastic part of the rate of deformation tensor follows the 

direction normal to the flow potential: 

d 

p = 

˙ λ
∂�

∂σ
(8) 

where ˙ λ is the non-negative plastic flow proportionality factor. 

The plastic part of the rate of deformation tensor and the effec- 

tive plastic strain rate in the matrix material are related by enforc- 

ing equality between the rates of macroscopic and matrix plastic 

work: 

σ : d 

p = ( 1 − f ) σy ̇
 ε 
p 

(9) 

Moreover, assuming the incompressibility of the matrix mate- 

rial, the evolution of the void volume fraction is defined as: 

˙ f = ( 1 − f ) d 

p : 1 (10) 

Note that void nucleation is not considered in the present anal- 

ysis. Hence, if the initial void volume fraction is zero, the macro- 

scopic material is fully dense and follows Mises plasticity. 

In ABAQUS/Explicit, the integration of the constitutive model 

relies on the consistency condition during plastic loading: 

˙ � = 0 (11) 

Details regarding the integration of the constitutive model are 

not given herein but can be found in [1] . 

The flow strength of the matrix material, Eq. (3) , has been used 

along with the GTN model pre-implemented in ABAQUS/Explicit 

through a user-defined subroutine VUHARD [20] . The material 

parameters related to the flow potential, Eq. (1) , and the flow 

strength of the matrix material, Eq. (3) , taken from [21] , are given 

in Table 1 . The average value of initial void volume fraction, from 

now on indistinctly referred to as porosity, is f 0 = 0 . 01 (average 

value over the whole gauge of the sample, see Section 3.2 ). 

3. Finite element model 

3D finite element simulations of flat tensile samples subjected 

to dynamic tension are carried out using the commercial finite el- 

ement code ABAQUS/Explicit [20] . 
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