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a b s t r a c t 

The statistical energy analysis (SEA) is applied to predict the transient energy response of structures with 

time-varying parameters for the first time. With the energy governing equations derived by consider- 

ing time-varying SEA parameters and energy flow item caused by time-varying damping loss factor, SEA 

method is firstly applied to predict transient energy response of time-varying systems. Then, numeri- 

cal examples of a time-varying two-oscillator system, a time-varying L-shaped fold plate and a complex 

time-varying vibro-acoustic structure are investigated to demonstrate the effectiveness and accuracy of 

SEA method for time-varying system. The Newmark-beta method and finite element method are used 

to verify the accuracy of predicted transient energy response. Results show that SEA method for time- 

varying system is capable of predicting transient energy response of time-varying structures with suffi- 

cient accuracy and also applicable for transient analysis of complex time-varying structures with a small 

computational cost. 

© 2018 Published by Elsevier Ltd. 

1. Introduction 

Many structures in practical engineering are time-varying struc- 

tures, which are characterized by the mass, stiffness or damping 

properties that change with time. For instance, the rapid combus- 

tion of rocket fuel will lead to time-varying mass dynamic prob- 

lems [1] and the aerodynamic heating will change the stiffness 

and damping characteristics of aircrafts. Moreover, moving vehicles 

on bridge structure will result in a time-varying vehicle-bridge in- 

teraction problem which must be well solved in order to assure 

the operation safety of high-speed railway [2] . Nowadays time- 

varying characteristics of system parameters are often neglected in 

dynamic analysis of engineering structures which will lead to inac- 

curate results in the dynamic response prediction. In order to im- 

prove the accuracy of dynamic response prediction of time-varying 

structures, it is increasingly important to consider the time-varying 

features of dynamical systems. 

At present, deterministic approaches are widely used to solve 

dynamic problems of time-varying structures. After the spatial dis- 

cretization of structures to several elements, the problem is turned 

into an initial value problem of linear ordinary differential equa- 

∗ Corresponding author at: Engineering Mechanics, Southeast University, No.2 

Dongnandaxue Road, Nanjing 211189, China. 

E-mail address: qgfei@seu.edu.cn (Q. Fei). 

tions (ODEs) with time-varying coefficients. Then time integration 

methods, such as the central difference method, Newmark-beta 

method, can be used to solve these ODEs in time domain. 

For transient analysis of time-varying structures, Penny and 

Howard [3] developed a time finite element method (TFEM) for a 

time-varying single degree-of-freedom system based on Hamilton’s 

principle. Yu et al. [4] extended the TFEM to time-varying multiple 

degrees of freedom systems based on Hamilton’s law of varying 

action. Zhao and Yu [5] presented a transient analysis method for 

linear time-varying structures based on multi-level sub-structuring 

method which improve the computational efficiency to a certain 

extent. For very complex systems in practical engineering, numer- 

ous number of elements are needed in deterministic approaches 

to describe the vibration behavior of time-varying structures, es- 

pecially in high frequency range. The computation cost will in- 

crease rapidly to predict dynamic response of complex structures. 

Therefore, energy based methods, such as statistical energy analy- 

sis (SEA, [6] ) and extended methods of SEA, are more suitable to 

analyse the problem. 

The SEA, which is largely inspired from statistical physics [7] , 

has been used to predict the average energy response of complex 

engineering systems for many years. Energy responses of subsys- 

tems can be calculated efficiently by solving energy transfer equa- 

tions between subsystems in SEA. However, traditional SEA is an 

approach for steady state problems. 

https://doi.org/10.1016/j.mechrescom.2018.06.001 

0093-6413/© 2018 Published by Elsevier Ltd. 

https://doi.org/10.1016/j.mechrescom.2018.06.001
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechrescom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechrescom.2018.06.001&domain=pdf
mailto:qgfei@seu.edu.cn
https://doi.org/10.1016/j.mechrescom.2018.06.001


94 Q. Chen et al. / Mechanics Research Communications 91 (2018) 93–99 

Over the past several decades, some methods are proposed as 

extensions of the SEA to analyse unsteady state problem of time- 

invariant structures. SEA is firstly applied to predict transient en- 

ergy response of time-invariant structures by transient statistical 

energy analysis (TSEA, [6] ). Then, Lai and Soom [8,9] proposed the 

concept of “time-varying coupling loss factor” for time-invariant 

structures in TSEA, however, it is just a concept in mathematics 

and hard to interpret in physics. Furthermore, Pinnington and Led- 

nik [10,11] applied TSEA to a two-oscillator system and a coupling- 

beam system, results from TSEA were compared with exact an- 

alytical solutions which showed that the prediction of TSEA is 

sometimes far from fitting the exact reference solution. Song et al. 

[12] applied affine arithmetic to TSEA of a two-oscillator system, 

and revealed the influence of measurement errors of parameters 

on predicted transient energy response. Experimentally, Robinson 

and Hopkins [13,14] used TSEA to calculate the maximum time- 

weighted sound and vibration levels in built-up structures. Good 

agreement was achieved between measurements and predictions. 

The transient local energy approach (TLEA), which was proposed 

by Ichchou et al. [15] , is another extension of SEA to predict tran- 

sient energy response of structures. With consideration of time- 

varying item in energy flow term, TLEA has much higher precision 

than TSEA [16] . 

The current research on dynamic response prediction of 

time-varying structures mostly concentrates on deterministic ap- 

proaches, which are prohibitly time consuming for complex struc- 

tures. Thus the statistical energy based approaches are preferred. 

On the other hand, though SEA has been developed at 1960s, 

research work mainly focused on transient energy prediction of 

time-invariant structures and literatures on prediction of transient 

energy response of time-varying structures are very limited. There- 

fore, by deriving the energy governing equations of time-varying 

structures, the SEA is firstly applied to predict transient energy re- 

sponse of time-varying structures in this paper. 

The outline of this work is as follows: In Section 2 , energy gov- 

erning equations of time-varying structures are derived and SEA is 

applied to predict transient energy response of time-varying struc- 

tures for the first time. In Sections 3 to 5 , the effectiveness and ac- 

curacy of SEA method for time-varying system are verified by nu- 

merical examples, which include comparison with Newmark-beta 

method of a simply two-oscillator system under an impulse exci- 

tation, comparison with finite element method of a time-varying 

L-shaped folded plate with an initial energy, an application on a 

complex time-varying vibro-acoustic system under an impulse ex- 

citation. Finally, in Section 6 , conclusions are drawn. 

2. Statistical energy analysis for time-varying structures 

Some basic definitions and assumption used to derive the en- 

ergy equation of time-varying structure are generally summarized 

as [16] 

e (s, t) = e + (s, t) + e −(s, t) (1) 

I(s, t) = I + (s, t) + I −(s, t) (2) 

I ±(s, t) = ±c · e ±(s, t) (3) 

where e + ( s,t ) and e −( s,t ) are energy density associated with the 

right and left train waves, while I + ( s,t ) and I −( s,t )are the incident 

and reflected power flows, the right train wave is considered sep- 

arate from the left one. c is the energy velocity, the same as the 

group velocity of waves in a slight damping medium. 

The local power balance for a non-loaded region can be ex- 

pressed as 

∂e (s, t) 

∂t 
+ P diss + 

∂ I(s, t) 

∂s 
= 0 (4) 

The dissipation power for time-varying structures is evaluated 

P diss = η(t) ω e (s, t) (5) 

where η( t ) is the time-varying damping loss factor (DLF), ω = 2 π f 

is radian frequency. 

Substituting Eqs. (1) –(3) and (5) into Eq. (4) yields: 

c 
∂e (s, t) 

∂s 
+ 

1 

c 

∂ I(s, t) 

∂t 
+ 

η(t) ω I(s, t) 

c 
= 0 (6) 

Differentiating Eq. (4) with respect to time and space, respec- 

tively, leads to the expression 

∂ 2 e (s, t) 

∂ t 2 
+ η(t) ω 

∂e (s, t) 

∂t 
+ e (s, t) ω 

∂η(t) 

∂t 
+ 

∂ 2 I(s, t) 

∂ s∂ t 
= 0 (7) 

∂ 2 I(s, t) 

∂ s∂ t 
+ c 2 

∂ 2 e (s, t) 

∂ s 2 
+ η(t) ω 

∂ I(s, t) 

∂s 
= 0 (8) 

By subtracting Eqs. (7) and (8) leads to the expression 

∂ 2 e (s, t) 

∂ t 2 
+ η(t) ω 

∂e (s, t) 

∂t 

+ e (s, t ) ω 

∂η(t ) 

∂t 
−c 2 

∂ 2 e (s, t ) 

∂ s 2 
−η(t ) ω 

∂ I(s, t ) 

∂s 
= 0 (9) 

Substituting the expression of ∂ I ( s, t )/ ∂ s in Eq. (4) into Eq. (9) 

∂ 2 e (s, t) 

∂ t 2 
+2 η(t) ω 

∂e (s, t) 

∂t 
+ e (s, t) ω 

∂η(t) 

∂t 

− c 2 
∂ 2 e (s, t) 

∂ s 2 
+ (η(t) ω) 2 e (s, t) = 0 (10) 

For time-varying structure consists of N subsystems, the 

concept of total energy rather than energy density turns the 

Eq. (10) into the form 

[ 
∂ 2 e (s, t) 

∂ t 2 
+ 2 η(t) ω 

∂e (s, t) 

∂t 
+ e (s, t) ω 

∂η(t) 

∂t 

−c 2 
∂ 2 e (s, t) 

∂ s 2 
+ (η(t) ω) 2 e (s, t)] = P i (t) (11) 

where ∫ V e i ( s,t ) = E i ( t ), E i ( t ) is time-varying energy stored in subsys- 

tem i, P i ( t ) is time-varying injected power into subsystem i and ∫ 
V ( − c 2 

η(t) ω 
∇ 

2 e ( s, t) ) dV = 

N ∑ 

j=1 , 
j � = i 

( ηi j (t) ω E i (t) ) −

N ∑ 

j=1 , 
j � = i 

( η ji (t) ω E j (t) ) , ηji ( t ) is time-varying coupling loss factor 

(CLF) between subsystem j to i . 

The power balance equation for subsystem i can be given by 

1 
ηi (t) ω 

d 2 E i (t) 
d t 2 

+ 2 

d E i (t) 
d t 

+ 

E i (t) 
ηi (t) 

d ηi (t) 
d t 

+ (
ηi (t) + 

N ∑ 

j =1 , j � = i 
ηi j (t) 

)
ω E i (t) −

N ∑ 

j =1 , j � = i 

(
η ji (t ) ω E j (t ) 

)
= P i (t) 

(12) 

The power balance equation for time-varying structure is driven 

by following second-order ODEs 

1 

ω η(t) 

d 

2 E (t) 

d t 2 
+ 2 

d E (t) 

d t 
+ 

E (t) 

η(t) 

d η(t) 

d t 
+ ω η(t) E (t) = P (t) (13) 

where E ( t ) = [ E 1 ( t ), E 2 ( t ), ••• E N ( t )] 
T is time-varying energy vector, 

η( t ) is time-varying losing factor matrix of time-varying structure, 

P ( t ) = [ P 1 ( t ), P 2 ( t ), ••• P N ( t )] 
T is time-varying input power vector, 

the superscript T represents matrix transpose. 
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