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a b s t r a c t 

Non-ordinary state-based peridynamic correspondence material model is known to have issues with ma- 

terial instability, i.e. the existence of zero-energy modes, due to non-unique mapping between defor- 

mation states and force states via the conventional peridynamic deformation gradient. In this paper, an 

alternative approach in which the deformation gradient hence force state are computed specifically for 

each individual bond is proposed to eliminate the material instability. Bond-associated deformation gra- 

dient is calculated based on deformation states within an individual bond’s proximity, termed here as 

the bond-associated family, rather than the whole family. This bond-associated deformation gradient can 

better represents the force state of each individual bond from the deformation states within its proximity, 

and hence inherently resolves issues of material instability in the conventional correspondence material 

model. Parametric study on bond-associated horizon size indicates that the optimal size should be no 

less than the material point’s horizon size but smaller than two times of that value. Comparisons against 

reference solutions using finite element method establish the validity and accuracy of the proposed for- 

mulation. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Among peridynamic models [1] , the correspondence model 

[2] is very useful in that it allows the direct use of classical contin- 

uum material constitutive models within peridynamic theory. Con- 

tinuum material models are naturally incorporated into the peri- 

dynamic framework via the counterpart measures, such as defor- 

mation gradient and first Piola–Kirchhoff stress tensor. However, 

the correspondence model suffers from some practical difficulties, 

such as non-invertibility [3] . This non-invertibility is a manifesta- 

tion of material instability rather than merely an artifact of mesh- 

less discretization. It can be understood as existence of many pos- 

sible deformations of a family that result in the same force state. 

As a consequence, there could be many possible deformation states 

of the entire body for a given loading. This has the practical effect 

of introducing zero-energy deformation modes to the model that 

need to be suppressed. Various remedies for zero-energy mode 

control are available in the literature, such as fictitious spring-force 

based methods [4,5] and stabilized field state based methods [6–

8,3] . Although can be used to alleviate instabilities arising from 

zero-energy modes, these methods have their own issues and lim- 

itations, such as tedious parameter tuning and problematic stress 

oscillation. Most importantly, these methods do not provide reso- 
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lution to the fundamental problem in the correspondence formu- 

lation leading to these zero-energy modes. 

To fully take advantage of correspondence model in direct in- 

corporation of continuum material constitutive relationships for 

nonlinear deformation and fracture modeling, there is still a strong 

need for effective zero-energy control schemes to be developed. 

In this paper, bond-associated deformation gradients are proposed 

to stabilize the conventional correspondence formulation to inher- 

ently resolve its material instability issue. This paper is organized 

as follows: Section 2 gives details on various deformation gradi- 

ent definitions in both continuum theory and peridynamic the- 

ory. Following this, derivation of force state based on the proposed 

bond-associated deformation gradient is presented in Section 3 . 

In Section 4 , parametric study to obtain optimal bond-associated 

horizon size is performed. Discussions and conclusions are drawn 

in Section 5 . 

2. Deformation gradient 

2.1. Deformation gradient in continuum mechanics 

The deformation gradient is the fundamental measure of de- 

formation in continuum mechanics. It maps line segments in the 

reference configuration into line segments (consisting of the same 

material points) in the current configuration. 

https://doi.org/10.1016/j.mechrescom.2018.04.004 

0093-6413/© 2018 Elsevier Ltd. All rights reserved. 

https://doi.org/10.1016/j.mechrescom.2018.04.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/mechrescom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.mechrescom.2018.04.004&domain=pdf
mailto:hailong.chen@inl.gov
https://doi.org/10.1016/j.mechrescom.2018.04.004


H. Chen / Mechanics Research Communications 90 (2018) 34–41 35 

Fig. 1. Deformation of a continuum body. 

Consider a line segment d X emanating from position X in the 

reference configuration �r which deforms to d x in the current con- 

figuration �c , see Fig. 1 . Thus, the line segment in the deformed 

configuration �c is given by 

dx = χ( X + dX ) − χ( X ) (1) 

A Taylor expansion of χ ( X + d X ) gives 

χ( X + dX ) = χ( X ) + 

∂χ

∂X 

( X ) · dX + O ( dX ) (2) 

where O ( d X ) indicates higher-order terms of d X . 

Substituting Eq. (2) into Eq. (1) and assuming that | d X | is a in- 

finitesimally small gives 

d x ≈ ∂χ

∂X 

( X ) · d X ≡ F ( X ) · d X (3) 

Eq. (3) tends to exact as the differential d X goes to zero. 

The deformation gradient thus characterizes the deformation in 

the neighborhood of material point X , mapping infinitesimal line 

segment d X emanating from X in the reference configuration to 

the infinitesimal line segment d x emanating from x in the de- 

formed configuration. 

2.2. Conventional peridynamic deformation gradient 

Before formulating the peridynamic deformation gradient, some 

useful states represented in Fig. 2 are discussed below: 

The relative position vector state of two material points in refer- 

ence configuration �r : 

X 〈 ξ 〉 = ξ = X 

′ − X (4) 

where the angle bracket notation indicates that the state is associ- 

ated with bond ξ. 

The relative displacement vector state of two material points: 

U [ X , t ] 〈 ξ 〉 = η = u 

(
X 

′ , t 
)

− u ( X , t ) (5) 

where the square bracket notation has similar meaning to standard 

parentheses, indicating dependence on quantities, but is used for 

peridynamic states. 

The relative position vector state or deformation state of two ma- 

terial points in the current configuration �c : 

Y [ X , t ] 〈 ξ 〉 = ξ + η = y 
(
X 

′ , t 
)

− y ( X , t ) (6) 

A finite distance that defines interactions between material 

points is called horizon. H X denotes the horizon at material point 

X with radius δ. For regular spatial discretization, the horizon size δ

Fig. 2. Schematic illustrating different states in peridynamics. 

Fig. 3. Configuration for conventional peridynamic deformation gradient. 

is usually represented in terms of mesh spacing �x using a spacing 

factor m as 

δ = m · �x (7) 

For a bond ξ, there exists infinitely many mappings that trans- 

form the relative position vector state X 〈 ξ 〉 in the reference con- 

figuration to the relative position vector state Y 〈 ξ 〉 in the current 

configuration. A possible transformation can be written as: 

Y 〈 ξ 〉 = F ξ · X 〈 ξ 〉 (8) 

where F ξ is the deformation gradient for bond ξ connecting mate- 

rial point X and its neighboring material point X 

′ . Here, Eq. (8) de- 

fines the operation of a peridynamic deformation gradient in a 

manner analogous to the continuum deformation gradient in that 

it maps a vector state in the reference configuration to a vector 

state in the current configuration. F ξ becomes the deformation gra- 

dient at material point X when bond ξ tends to an infinitesimal 

length. 

Writing Eq. (8) for material point X and each of the bonds con- 

necting it with its neighbors leads to a system of over-constrained 

linear equations that cannot generally satisfied by a single map- 

ping F ξ . See Fig. 3 for reference. For this reason, a technique to 

compute an optimal deformation gradient F is sought. Techniques 
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