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a b s t r a c t 

In the present work, a new adhesion model is proposed to analyze the peeling behavior of plane-strain 

shearable hyperelastic beams from a rigid flat substrate. The large strain effect, the bending effect and the 

transverse shear effect are all taken into account in the model. The variational method is utilized to derive 

the equilibrium equations and associated boundary conditions, including one that physically means the 

local peeling (fracture) criterion. A first integral is found for such kind of beams and is also used to derive 

an equivalent global peeling criterion. It is proven that the critical peeling force for the steady peeling 

of such shearable hyperelastic beams is the same as that for hyperelastic thin films with membrane 

approximation. The effect of pre-stretch on the peeling behavior is further considered. The developed 

model will contribute to the modeling and understanding of the adhesion and fracture behaviors of soft 

structures and biomimetic adhesives. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

Detachment of thin, flexible films by peeling is a ubiquitous 

phenomenon of practical importance to a wide range of prob- 

lems. Examples include the fabrication and reliability of multifunc- 

tional layered components [5,6] , adhesive tapes used to fix objects 

in place [11,39,40] , transfer printing of micro/nano-scale materi- 

als and devices from one substrate to another [9,37,41] , the abil- 

ity of plants and animals to cling to surfaces [4,24,30,34] , and 

the achievement of physiological functions of tissues involving cell 

contact, adhesion and mechanotransduction [10,31,35] . 

Peeling mechanics of thin films has been extensively studied 

[2–4,7,8,12,18,19,21,26–30,33,34] . Many theoretical works were con- 

ducted via employing the inextensible elastica model [8,18,26] or 

extensible elastica model [17,19,27,28] . The finite rotation of the 

peeled film can be described by such kind of models, while inex- 

tensibility or small strain assumption is adopted in these models. 

For the case of small-angle peeling with a moderate interfacial ad- 

hesion energy or large-angle peeling with a strong interfacial ad- 

hesion energy, large strain probably occurs in the peeled film, and 

thus the elastica-based adhesion models fail to accurately describe 

the peeling behavior. The detachment of hyperelastic membranes 

from a flat substrate has also been studied by adopting the mem- 

brane approximation [2,7,12,38] . These adhesion models adopt hy- 

perelastic constitutive relations and account for the large strain ef- 
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fect. However, the bending effect (bending resistance) is neglected 

in such types of models, which may be of great importance in 

some cases [18,19,27,34] . As far as we know, the bending effect and 

the large strain effect have not been simultaneously considered in 

a single theoretical adhesion model. 

It is known that hyperelastic beam models account for the 

bending deformation, while most hyperelastic beam models do not 

consider the variation of the cross-section of the beam under large 

strain [1,36] . Thus the large strain effect is not accurately described 

in these models. In a recent work [15] , we proposed a new finite 

strain beam model which accounts for the thickness stretchability 

(with the plane strain assumption). Hence, both the bending ef- 

fect and the large strain effect are captured in this model. Based 

on this model, an adhesion model was developed to describe the 

peeling behavior of Euler-type hyperelastic beams [13] . However, 

the transverse shear effect is neglected in the adhesion model. It 

is known that for a moderately thick beam, the shear effect has a 

significant effect on the mechanical behavior of the beam. Moti- 

vated by such a gap, we will incorporate the shear effect into the 

adhesion model, and consequently, develop a new adhesion model 

for shearable hyperelastic beams within the plane-strain context. 

The remainder of this paper is structured as follows. In 

Sections 2.1 and 2.2 , the kinematics and constitutive relations 

for shearable hyperelastic beams are briefly presented. Based on 

these results and by using the variational method, the equilib- 

rium equations and associated boundary conditions are derived in 

Section 2.3 . In the subsequent subsection, a first integral is found 

for the equilibrium equation and it is then utilized to derive the 

global peeling criterion and also the critical force for steady peel- 
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Fig. 1. Schematic figures for the reference and current configurations of a shearable 

hyperelastic beam lying on a rigid flat substrate and subjected to a peeling force. 

ing. The pre-stretch effect is further considered in Section 2.5 . At 

last, some conclusions are presented in Section 3 . 

2. Theoretical modeling 

2.1. Kinematics 

A finite strain beam model was proposed for plane-strain shear- 

able hyperelastic beams in a previous work [14] . We will use 

the model to establish a new adhesion model to describe the 

peeling behavior of a plane-strain shearable hyperelastic beam. 

It is assumed in that model that any planar cross-section of the 

beam remains planar after deformation, and the beam is trans- 

versely shearable. However, the rigid cross-section hypothesis usu- 

ally adopted in the classical Timoshenko beam model is relaxed 

by considering the thickness stretchability. Moreover, for the sake 

of simplicity, the plane strain assumption is adopted. Thus for a 

initially straight hyperelastic beam with rectangular cross-section 

(the width and thickness denoted by B and H , respectively) as 

shown in Fig. 1 , deformation only occurs in the O-XZ plane. The 

plane strain assumption is applicable to beams with stiff fiber con- 

straint in the width direction [16] . 

The deformation of a plane-strain hyperelastic beam from an 

initial stress-free configuration, which is referred to as the refer- 

ence configuration, can be described by a mapping x = χ( X ), i.e. , 

any material point denoted by its initial position X in the reference 

configuration is moved to a new position x . In a Cartesian coordi- 

nate system, it can be written as x = X + u ( X, Z ), y = Y, z = Z + w ( X, 

Z ), where u and w are the horizontal and vertical components of 

the displacement of any material point in the beam, respectively. 

According to the aforementioned deformation hypothesis, we have 

the following expressions for the two displacement components: 

u ( X, Z ) = u 0 ( X ) − z ∗( X, Z ) sin [ ϕ ( X ) ] , 

w ( X, Z ) = w 0 ( X ) + z ∗( X, Z ) cos [ ϕ ( X ) ] − Z, (1) 

where u 0 and w 0 are the displacement components of any point on 

the geometrical mid plane, z ∗ = 

∫ Z 
0 λZ d Z , in which λZ is the stretch 

of any line element d Z and the absolute value of z ∗ means the de- 

formed distance between the material point ( X, Y, Z ) to the corre- 

sponding one ( X, Y , 0) on the geometrical mid plane, and ϕ is the 

rotation angle of the cross-section. The slanted angle and stretch 

of any line element d X on the deformed geometrical mid plane are 

denoted by θ ( X ) and λ( X ), respectively. According to the geometric 

relation as shown in Fig. 1 , it is easy to find that: 

θ = arctan 

w 

′ 
0 

1 + u 

′ 
0 

, λ = 

√ (
1 + u 

′ 
0 

)2 + w 

′ 2 
0 

, (2) 

where ( ) ′ represents derivative with respect to the coordinate 

X . 

Due to the shear deformation, the slanted angle θ of the tan- 

gent plane of the deformed geometrical mid plane is not the 

same as the cross-sectional rotation angle ϕ. The difference be- 

tween them, denoted by α = θ −ϕ, is obviously the shear angle. 

The derivative ϕ′ physically means the nominal bending curvature 

of the beam (not equal to the nominal curvature θ ′ of the de- 

formed geometrical mid line) and it is denoted by a new symbol 

κ . 

Through detailed kinematic analysis [14] , it can be found for 

incompressible materials that: 

λX = 

√ 

λ2 − 2 κZ . (3) 

λZ = 

(
λ2 cos 2 α − 2 κZ 

)−1 / 2 
. (4) 

I 1 = tr C = λ2 − 2 κZ + 

(
λ2 cos 2 α − 2 κZ 

)−1 + 1 (5) 

where λX is the stretch of any (initially horizontal) line element d X . 

It is noted that for the present homogeneous plane strain beam, 

we also have I 2 = I 1 , I 3 = 1, where I k ( k = 1, 2, 3) are the principal in- 

variants of the right Cauchy-Green deformation tensor C = F T F with 

F = ∂x / ∂X the deformation gradient. 

2.2. Constitutive equations 

For the studied finite strain beam, the strain energy per unit 

reference length is defined by 

φ( λ, α, κ) = 

∫ 
A 

W d A , (6) 

where W is the strain energy per unit reference volume of the 

beam, and the area integral is over the referential (undeformed) 

cross-section of the beam. It is noted that Simo [36] derived the 

constitutive relations for spatial rods based on the 3D finite de- 

formation theory and the assumed rigid planar cross-section hy- 

pothesis. Following Simo’s method, and neglecting some additional 

strain energies due to thickness stretching, which are very small 

compared with the dominant stretching, shear and bending en- 

ergies, we obtain the energy formula for shearable and thickness 

stretchable beams, 

δφ = N n δλn + N s δγ + Mδκ, (7) 

which is the same with that given by Simo [36] and also by 

Ressiner [32] . Eq. (7) is equivalent to the following constitutive 

equations: 

N n = 

∂φ

∂ λn 
( λ, α, κ) , 

N s = 

∂φ

∂γ
( λ, α, κ) , 

M = 

∂φ

∂κ
( λ, α, κ) , (8) 

where λn = λcos α − 1 and γ = λsin α are the normal strain and 

shear strain on the deformed planar cross-section (whose rotation 

angle is ϕ), and N n , N s and M are the normal stress resultant, shear 

stress resultant and bending moment, respectively, on the same 

cross-section. Eq. (8) 1 –3 shows that the generalized forces N n , N s 

and M on the cross-section are respectively work conjugated to the 

corresponding generalized strains λn , γ and κ . 

With the substitution of the expressions for λn and γ into 

Eq. (7) , we also have: 

δφ = T δλ + Sλδα + Mδκ, (9) 
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