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a b s t r a c t 

The constraint behavior of compliant mechanisms can be improved via strengthening the stiffness of their 

constitutive beams using intermediate elements. This interior element may be assumed to be perfectly 

rigid or one can consider its compliance as a design parameter. While modeling the static behavior of 

such systems is state of art, the nonlinear dynamic of such systems have been remained un-investigated. 

So the objective of this paper is to suggest an analytical framework for modeling nonlinear free and 

forced vibrations of a simple flexure beam strengthened via a compliant intermediate element. The equa- 

tions of motion of the system are derived using Hamilton’s principle. Based on a single mode approxima- 

tion, the partial differential equations of motion are transformed into two temporal equations. Employing 

multiple time-scales perturbation techniques, free vibration time histories and forced vibration response 

due to base excitation is derived analytically. Different parametric studies are carried out to recognize the 

effect of the intermediate compliant element on the vibrational behavior of the flexure beam. The results 

of this paper are expected to develop a new approach in modeling and investigation of load-displacement 

behavior of compliant mechanisms. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Introduction 

The advent of compliant mechanisms in technological areas has 

created a new design generation for many precision engineering 

apparatuses. The performance of these mechanisms can be guar- 

anteed somehow by their appropriate design and analysis. Com- 

pliant modules benefit from elastic deformation of mechanical ele- 

ments to provide a guided motion. Compared to traditional mecha- 

nisms, implementation of compliant elements in mechanical units, 

facilitates the resulted structure with high motion resolution. The 

resulting motion is free of backlash, friction and undesired par- 

asitic errors. Such superiorities extend the applications of com- 

pliant mechanisms to numerous areas including precision actu- 

ation instruments [4,30] , precision hinges [10] , energy harvest- 

ing devices [13] , compliant grippers [12] , multi-stable structures 

[5,18,26] , micro/nano-manipulators [29] , and so many other prod- 

ucts (please see [8,9] for more examples). 

A well-designed flexure unit should provide a large motion 

stroke in some specific directions (known as DoFs) along with neg- 
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ligible displacement along others (called the DoCs). Flexure beams 

are the core building block of most compliant mechanisms which 

convey the motion to the final stage via their elastic deformation. 

To have a large motion range, the constitutive flexure beams have 

to undergo large deflections which bring about nonlinearities due 

to arc length conservation, curvature, wrapping and trapeze effects 

[27] . Among these sources of nonlinearities, the conservation of arc 

length which is resulted from axial displacement of flexure beams 

sections, plays a significant role in dynamic behavior of such sys- 

tems. This nonlinearity is the origin of the most important mo- 

tion attributes of compliant mechanisms such as load-stiffening 

in the DoF and stiffness degradation in DoC directions. Using dif- 

ferent design schemes for compliant mechanisms (such as paral- 

lel/serial configurations as well as different geometrical and me- 

chanical specifications), their constraint behavior can be enhanced. 

As some examples, Yamakawa et al. [31] developed a six-DoF com- 

pliant structure enable of producing large highly-constrained pla- 

nar motion. Yao et al. [32] proposed a hybrid assembly composed 

of serial-parallel flexure units which eliminate the undesired ro- 

tations of the motion stage. Brouwer et al. [3] employed a par- 

allel kinematic design of flexure beams for micro-manipulations 

of MEMS devices. Hao and Kong [6] presented a 3-DoF compliant 

manipulator capable of providing large range decoupled motion. 

Although these effort s have developed countless design strategies 
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into the area of compliant mechanisms, the idea of improving the 

motion characteristics of flexure beam is another systematic sce- 

nario which can be implemented to any compliant unit. Based 

on this approach, an intermediate element is attached to flexure 

beams of a mechanism to alter the load-displacement behavior of 

the outcome. As a result, the undesired characteristics such as stiff- 

ness drop or load-stiffening effects are alleviated. This idea was 

first developed in [27] where an interconnected rigid segment was 

introduced into the mathematical model of a flexure beam. The 

result of this manipulated design was enhancing the constraint 

behavior of flexure beams [1] . This achievement was also spread 

to more complex mechanisms by replacing the constitutive ele- 

ments with rigidly reinforced counterparts [28] . As some exam- 

ples, by taking advantages of this newly-proposed model, double 

parallelogram (DP), DPDP, tilted DPDP and clamped DPDP compli- 

ant mechanisms were upgraded to improve the travelling range of 

com-drive actuators [19–21] . 

The major un-addressed question about the reinforcement 

strategy is to determine a criterion for the concept of perfectly 

rigid reinforcement. If so, one needs to find out whether the rigid 

reinforcement idea brings about the best load-displacement re- 

sults. To answer these questions, recently, a new more accurate for- 

mulation has been presented in which the compliance of the inter- 

mediate element was taken into account in the load-displacement 

relations of simple flexure units [23] . The proposed formulation 

was proved to more accurately simulate the nonlinear constraint 

behavior of basic compliant modules such as flexure beams and 

parallelogram mechanisms. 

While different attributes of various compliant mechanisms 

have been well-addressed in prior arts, the problem of dynamic 

behavior of flexure units is an important issue which has not been 

yet considered properly. Such a study is complicated however, due 

to the multi-body nature of the mechanism as well as the activa- 

tion of geometrically nonlinear behavior. To overcome such diffi- 

culties, the complex mechanisms need to be sub-divided into ele- 

ments whose dynamic can be studied much more easily. As it was 

mentioned earlier, flexure beams are the main building block of 

many compliant modules and can be considered as the key to dis- 

close dynamic of complex structures. While the dynamic modeling 

of beams in different conditions are well-developed in the litera- 

ture ( [7,17,22] ), flexure beams have not yet been addressed prop- 

erly. Among few examples dealt with investigation of the dynamic 

behavior of flexure elements, one can mention the work of Moeen- 

fard and Awtar [14] . In their research, the nonlinear vibration of 

flexure beams carrying a tip mass was considered. Here in this pa- 

per, the nonlinear flexural-extensional vibrations of flexure beams 

enhanced via a compliant interconnected element are simulated 

analytically. Using the exact mode shapes of the system, the time 

history of the free vibration and nonlinear frequency response of 

the forced vibration of the beam are derived and the effect of rein- 

forcement properties on these responses is investigated. It will be 

demonstrated that the compliance of the intermediate body plays 

an important role in the dynamic specifications of the system. 

2. Problem formulation 

The Schematic view of a typical flexure beam with length L is 

shown in Fig. 1 . A tip mass M is attached at the end of the beam 

and the structure is subjected to a base excitation Y b ( ̂ t ) = Y 0 sin ω ̂

 t . 

For the sake of generality, the flexure beam is assumed to be con- 

sisted of a not necessarily rigid intermediate reinforcement with 

length L − 2 a . The height and thickness of the beam’s primary (un- 

reinforced) sections are denoted as H and T respectively. 

Compliant mechanisms are made up of long slender beams 

which are excited in the mid-range frequency. In such circum- 

stances, the beams can be accurately modeled in the context of the 

Euler-Bernoulli beam theory [15,25] . Based on this theory, plane 

cross sections remain plane and normal to the neutral axis. On 

the other hand, flexure mechanisms impose large transverse de- 

flections to its beams up to 10–15% of their length. At these large 

deformations, a linear theory is no longer capable of describing the 

beam’s behavior and geometric nonlinearities come into play. Ac- 

cordingly, the nonlinear axial strain of an element located at a dis- 

tance Y from the neutral axis will be as 
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where U and W are the axial and transverse displacement compo- 

nents respectively. 

Assuming the flexure beam to be composed of linear elastic 

materials, the total strain energy of the system would be stated 

as 

V = 

1 

2 

∫ ∫ ∫ 
�
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In the above relation, � is the volume and E denotes the 

Young’s modulus of elasticity of the beam’s material. Inserting the 

strain expression (1) into (2) , assuming constant material proper- 

ties along the beam and performing some mathematical manipu- 

lations, the overall strain energy of the beam can be written as 

V = 

∑ 6 
i =1 V i , where [23] 
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In these equations, I and A respectively represent the second 

area moment of inertia and area cross sections of the primary 

beam sections and I i and A i are the corresponding values for the 

intermediate section. Moreover, U a ( t ), U L − a ( t ) and U L ( t ) are the ax- 

ial displacements at X = a, X = L − a and X = L respectively. 

The radius of gyration of the flexure beam under study is con- 

sidered to be very small. In such condition, the axial inertia be- 

comes negligible [16] . So the kinetic energy of the flexure beam 

and its tip mass can be states as T = 

∑ 4 
i =1 T i , in which 

T 1 = 

ρA 
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