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a  b  s  t  r  a  c  t

Several  modeling  techniques  aiming  at  considering  cracks  as kinematics  discontinuities  have  been  pro-
posed  for  the  past  years.  Within  this  scope,  the  embedded  finite  element  method  (E-FEM)  was  introduced
a  couple  of  years  ago.  Among  the features  of  this  approach,  it has  been  shown  that  a  kinematic  enhance-
ment  of  the  displacement  field  allows  constructing  a discrete  model  (expressed  in  terms  of  traction
vector–displacement  jump)  from  any  continuous  model  (expressed  in terms  of stress–strain).  This result
has  been  rigorously  established  if the  continuous  model  is formulated  within  the framework  of either
isotropic  continuum  damage  or plasticity  theories.  The  objectives  of this  study  are  (i)  to  extend  this
result  in case  where  the  continuous  model  belongs  to a class  of  anisotropic  continuum  damage  consti-
tutive  models  and  (ii) to  show  the main  features  of  a  specific  traction/separation  law  derived  from  the
aforementioned  class  of constitutive  models  through  several  numerical  case-studies.  In  this  paper,  the
light  is  put  on  the theoretical  considerations  which  allow  deriving  discrete  models  in  a consistent  way.

© 2016  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Cracking is one of the major contributing factors to the energy
dissipation when dealing with failure analysis of quasi-brittle
materials. For the past decades, many authors focused on devel-
oping consistent approaches to model this dissipative mechanism.

The existing approaches can be sorted in two categories,
depending on the fact if cracks are modeled in a localized way
or in a diffuse way. The first category includes constitutive laws
expressed within the theoretical frameworks of continuum damage
mechanics and plasticity. However, it is well known that meso-
scopic quantities, such as crack openings or spacings, cannot be
predicted accurately because of the diffuse description of crack-
ing. In order to overcome this drawback, alternative approaches
based upon a kinematics enhancement of the displacement field
came up. In this second category, we can distinguish two subgroups
of techniques, according to the type of kinematics enhancement
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considered. Some of them assume a local1 enhancement [1–3]
whereas others postulate a global2 [4,5].

Among the approaches based upon a local kinematics enhance-
ment, the strong discontinuity method (SDM) is one of the most
used [6,7] because of (i) its low-intrusiveness in computational soft-
wares and (ii) the absence of additional degrees of freedom, keeping
unchanged the structure of the algebraic system of equations to be
solved out. Within this framework, it has been shown that the kine-
matics enhancement of the displacement field allows defining a
discrete constitutive law (expressed in terms of traction vector and
displacement jump), from specific classes of continuous constitu-
tive laws (expressed in terms of stress and strain) [8–10]. Especially,
this result has been rigorously established in case of a continu-
ous constitutive model expressed within the framework of either
isotropic continuum damage mechanics or plasticity theories.

The objective of this paper is to show that a strong disconti-
nuity kinematics enhancement leads naturally to the definition of

1 The term local refers to the fact that the additional degrees of freedom related
to  the kinematics enhancement can be condensed at the finite element level. The
size  of the algebraic system of equations to be solved is not modified with respect
to  the case of a classical kinematics.

2 The term global refers to the fact that the additional degrees of freedom are
considered at the node.
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a discrete constitutive model even though a family of anisotropic
continuum damage based constitutive models is considered. In
other words, it is proposed to extend the result shown by [8] to a
class of anisotropic continuum constitutive models derived from
micromechanical assumptions. While the existence of a closed-
form expression of the effective stress tensor �̃ is straightforward
in case of isotropic continuum damage theory, this feature is no
more ensured when dealing with anisotropy. Indeed, the multi-
plicative structure of the stress tensor � = (1 − d) �̃, d standing for
the scalar damage variable, plays an important role when deriving
the underlying discrete model, as shown by [8].

In order to achieve this objective, the paper is outlined as
follows. Firstly, the theoretical framework defining the class of con-
tinuum models considered in this study is exposed. Secondly, the
strong discontinuity analysis of this class of constitutive models is
presented. It aims at analyzing the kinematics compatibility of the
continuum damage based framework with the unbounded strain
field, derived from the displacement field enhanced with a discon-
tinuous part. Thirdly, the discrete constitutive framework which
can be naturally derived from the aforementioned analysis is pre-
sented.

2. Anisotropic continuum damage mechanics based
framework

2.1. State potential

Among the various ways to express the state potential, the one
retained in this study lies in choosing the Helmholtz free energy. It
is expressed as follows:

�(ε, (�i)i=1,···,n) = �0(ε) − �a((�i)i=1,...,n, ε) (1)

where � is the Helmholtz free energy, (�i)i=1,...,n ≥ 0 are directional
internal variables that may  be interpreted as micro-cracking densi-
ties in the directions i = 1, . . .,  n, �0(ε) = 1

2 ε : C : ε ≥ 0 is the elastic

contribution of the Helmholtz free energy and �a((�i)i=1,...,n, ε) ≥ 0
the inelastic one. It is important to notice that the part of the energy
stored due to hardening process has not been included in Eq. (1) for
the sake of simplicity. It is assumed that �a is expressed as follows:

�a((�i)i=1,...,n, ε) =
n∑

i=1

�igi(ε) (2)

where (gi)i=1,...,n : E → R
+, E being the space of compatible strain

tensors. (gi)i=1,...,n are assumed to be combinations of quadratic
strain-based terms in order to ensure (i) the convexity and (ii) the
continuity of the second order derivative of the state potential. The
functions gi can be chosen according to tensorial representation
theories in order to particularize the way of taking into account the
damage anisotropy [11–13]. Furthermore, Eq. (1) shows that the
Helmholtz free energy is progressively decreased to zero when a
dissipative process involving the flow of the micro-cracking den-
sity variables is activated. The first derivatives of the set of functions
(gi)i=1,...,n are assumed to be linear combinations of strain-based
terms. It is interesting to notice that the isotropic case can be recov-
ered if: (i) all the damage density variables are chosen such as they
have similar flow rules i.e. �i = �0, ∀ i ∈ {1, . . .,  n} and (ii) the terms
dgi
dε are chosen such as

∑n
i=1

dgi
dε (ε) = �

0
(ε).

2.2. State equations

The general expressions of the state equations can be obtained
by differentiating the state potential with respect to the state and

internal variables. The Cauchy stress tensor can be expressed as
follows:

�(ε) = ∂�

∂ε
(ε, (�i)i=1,···,n) = �

0
(ε) −

n∑
i=1

�i
dgi

dε
(ε) (3)

where �
0

= C : ε is the elastic contribution to the Cauchy stress

tensor. One can notice that the Cauchy’s stress � is progressively
decreased when the micro-cracking density variables flow. The
remaining state laws lie in defining the n thermodynamic forces
related to the micro-cracking density variables. They are expressed
as follows:

F�i
(ε) = −∂�

∂�i

(ε) = gi(ε) (4)

2.3. Flow rules

The micro-cracking density variables are assumed to be
independent.3 Therefore, n independent threshold surfaces are
introduced in order to manage the flow of each variable �i. They
can be expressed as follows:

��i
(F�i

, Zi) = F�i
− Zi (5)

where Zi ∈ [0, Z0] is the thermodynamic variable related to a neg-
ative isotropic hardening mechanism, allowing to describe the
softening response in the inelastic regime. More precisely, the vari-
able Zi can be expressed through the definition of a consolidation
function Hi (function of the hardening variable zi) as follows:

Zi = dHi(zi)
dzi

(6)

Assuming associative flow rules, the rate of the micro-cracking den-
sity variables �i can be expressed as follows:

�̇i = �̇i
∂��i

∂F�i

= �̇i (7)

where ˙(.) stands for the rate of (.) and �̇i is the Lagrange multiplier
related to the ith dissipative mechanism. The internal variable zi,
related to the thermodynamic force Zi, can also be managed by
assuming an associative flow rule:

żi = �̇i
∂��i

∂Zi

= −�̇i (8)

One can notice that variables zi and �i are flow-coupled because
�̇i = −żi. Finally, the following loading/unloading conditions should
be satisfied:

�̇i ≥ 0; ��i
≤ 0; �̇i��i

= 0 (9)

3. Strong discontinuity analysis

3.1. Enhanced kinematics

Let us denote by 	 a body in R
3. Let us also consider that a

strong discontinuity occurs at a certain location 
 in 	,  such as 	
is split into two  sub-bodies 	+ and 	−. These two sub-bodies can
be identified in a consistent manner according to the normal n to
the discontinuity 
 (line in 2D or a plane in 3D). The discontinuous
displacement field can be expressed as follows:

u(x, t) = u(x, t) + H
(x)[u](x, t) (10)

3 The term independent means there is no flow-coupling.
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