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a  b  s  t  r  a  c  t

A  simple  model  for history  dependent  nonlinear  viscoelasticity  is considered.  The  determining  equation
governing  shear  motions  is  derived  and  investigated  in the  quasistatic  approximation  and  under  the
traveling  waves  ansatz.  Traveling  waves  are  possible  only  if  an  inequality  involving  the  constitutive
parameters  is satisfied.  This  fact is in  contrast  to what  happens  in viscoelasticity  of  the  Kelvin–Voigt
type.  On  the  other  hand,  in the quasi-static  approximation  (classical  creep  and  recovery  experiments)
the  behavior  of the history  dependent  model  is similar  to  analogous  rate  dependent  models.
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1. Introduction

Three-dimensional theory of nonlinear viscoelasticity is an
important but very complex subject.

For example, viscous dampers are ubiquitous components
of many mechanical applications where vibrations need to be
damped, isolated or controlled. In empirical finite degree models
viscous dampers are considered via a dashpot element, i.e. by the
action of a velocity dependent force in a direction opposing the
velocity of the vibrating mass.

The basic Kelvin–Voigt model of linear viscoelasticity is the
three-dimensional version of a purely viscous linear damper and
linear elastic spring connected in parallel.

Generalizations of the Kelvin–Voigt model to a linear and non-
linear setting has been provided by many authors. For example, a
possible generalization suitable for the linear setting is contained
in the celebrated elasticity book by Landau and Lifchitz (more pre-
cisely: at the end of Section 34, Chapter 5) [14]. The extension of
this proposal in a nonlinear setting is not straightforward. For this
reason, many nonlinear viscoelastic models based on this idea are
incorrect [1]. The details of the history and problems for the non-
linear version of the Kelvin–Voigt model have been discussed by
Destrade, Saccomandi and Vianello in [5] where a correct (i.e. frame
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indifferent) generalization to nonlinear materials of the Landau and
Lifchitz model has been provided.

For the nonlinear Kelvin–Voigt model in recent times several
results have been obtained (see [3,11,17]). These results show that
when the constant Kelvin–Voigt viscosity is replaced by a constitu-
tive function (of the amount of strain and/or of the amount of the
strain rate) several mathematical complexities can be encountered.

To ensure a meaningful mechanical behavior of a Kelvin–Voigt
mathematical model with a non-constant viscosity we need: (i) a
well-defined linear limit of the nonlinear viscosity function (see for
example [15]); (ii) the boundedness from above and from below of
the function (see for example [16]).

If in an empirical finite dimensional model we  connect a
purely viscous damper and a purely elastic spring in series we
obtain a Maxwell model. This is a model quite different from the
Kelvin–Voigt model because it takes into account stress relaxation
and not strain relaxation. The generalization of the Maxwell model
to large deformations and in a general three-dimensional setting is
complicated by the use of objective derivatives with respect time.
Whereas in fluid-mechanics many models in this class of mate-
rials have been proposed, in solid mechanics this idea have been
investigated only in few occasions [6,20].

Using elastomer components in engineering applications stress
relaxation, creep and the recovery of set after a period of constant
loading are experimentally detected. In a paper, about cross-linked
unfilled natural rubber, by Alan Gent [9] (see also [19]) the rela-
tionships between various manifestations of viscoelastic behavior
have been experimentally examined into details. The main findings
are that:
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• the stress relaxation rate is substantially independent of the
amount or the type of the deformation for moderate, but finite,
deformations;

• for creep and recovery a linear dependence on the logarithm of
time is observed;

• the rates of the creep and the recovery behavior are related to the
nonlinear stress–strain behavior of the elastomer.

This means that the model proposed in [6] can be effectively
used to describe stress relaxation behavior in natural rubber, but
we need to be very careful in the choice of the dissipative part of
the stress tensor associated with the history of strain to reproduce
the creep and recovery data.

It is well known that dissipative phenomena can be not only
described by a Kelvin–Voigt model, but they can also be charac-
terized by using forces dependent on the positions that the object
occupied (in relation to its present position), a period of time �t
before the current time. These actions are denoted history depend-
ent dissipative forces. In this framework stresses in the material
depend on past as well as present states of deformation. This idea
has been first proposed in a linear framework by Boltzmann in 1876.
A nonlinear version of this model have been proposed in [2], inves-
tigated in detail in [7] and applied to modeling shear mountings in
[8].

The aim of this note is to investigate the determining equation
for shear motions in the framework of this history dependent non-
linear constitutive model to point out some basic mathematical
features with the aim of developing feasible and effective mod-
els for natural rubber. To this end we investigate the possibility
of traveling waves and the creep and recovery phenomena in the
quasi-static approximation. For the sake of mathematical simplicity
we start considering a model that does not take into account stress
relaxation. The model, we are considering can be easily imple-
mented in a constitutive law with stress-relaxation like the one
considered in [6].

The qualitative theory of one-dimensional motions for integro-
differential models have been investigated by the methods of
functional analysis by several authors (see for example the review
paper [12] and the note [10]), but here we are interested in deter-
mining analytical closed form solutions for (smooth) traveling
waves and quasi-static motions to provide a direct and simple inter-
pretation of various constitutive requirements. This is because in a
nonlinear framework the dissipative properties of the material can
depend on the strain and/or strain rate and therefore the constitu-
tive choices are a delicate matter.

For an introductory review to the nonlinear theory of viscoelas-
ticity we refer the reader to [18].

2. Basic equations

Let R denote a fixed reference configuration of a body B and let
introduce the Cartesian coordinates X to identify each particle of
the body. A motion assign a x = �( X , t) to each particle X at each
instant of time t. If the symmetric Cauchy stress tensor is denoted as
T the balance of linear momentum, in the absence of body forces,
is given by

�xtt = div T, (2.1)

where the operator div is the divergence with respect to x, a
subscript is the partial derivative with respect to the indicated
independent variable and � is the material density in the current
configuration.

Let us introduce the right Cauchy–Green deformation tensor C =
FT F (equivalently of the left Cauchy–Green deformation tensor
B = FFT), F being the deformation gradient tensor relative to the

(unstressed) reference configuration; thus the principal invariants
are

I1 = trC, I2 = 1
2

[(trC)2 − tr(C2)], I3 = det C. (2.2)

We restrict our attention to isotropic and incompressible mate-
rials. Therefore, only isochoric deformations, J := I1/2

3 := det F = 1,
are possible.

We split the Cauchy stress tensor in a elastic and a dissipative
part: T = T e + Td.

2.1. Elastic part

For the elastic part we introduce the strain-energy density
W = W(I1, I2) such that

T e = −pI + 2W1B − 2W2B−1, (2.3)

where I is the identity tensor, Wi = ∂W/∂Ii (i = 1, 2) and p is the
Lagrange multiplier associated with the isochoricity constraint.

An example of a strain energy-density function is given by

W = �

2

[
(I1 − 3) + ˇ

2
(I1 − 3)2

]
. (2.4)

Here � > 0 is the infinitesimal shear modulus and  ̌ is a (positive)
constitutive parameter. When  ̌ = 0 from (2.4) we  recover the neo-
Hookean strain-energy.

2.2. Dissipative part

We  introduce the kinematical quantity

J t(X, t − s) = Ct(X, t − s) − I, (2.5)

where Ct( X , t − s) = F−T( X , t) FT( X , t − s) F( X , t − s) F−1( X , t) .
The (2.5) is used to define the dissipative part of the Cauchy

stress tensor as

Td =
∫ ∞

0

ϕ (F(X, t), D(X, t), s) J t ds, (2.6)

where the stretching tensor is D ≡ 1/2(ḞF−1 + F−T Ḟ
T
), and we

assume that the memory fades in time such that ϕ(s) = d�/ds . The
relaxation function � is such that lim

s→∞
� = 0 and we consider the

same choice of [7]

� (F(X, t), D(X, t), s) = � (F(X, t), D(X, t)) exp
(−s

	

)
. (2.7)

In the single exponential modulus the 	 is a constant relaxation
time.

Because we are considering isotropic materials the function �
must depend with respect to the invariants I1, I2, the invariants of
the stretching tensor tr D2, tr D3, and the mixed invariants tr( BD),
tr( B2 D), tr( BD2), tr( B2 D2).

2.3. Shear motions

We  are interested in the shear motion

x = X + u(Y, t), y = Y, z = Z, (2.8)

where u is the unknown displacement. If we introduce the shear
strain K = uY we compute the gradient of deformation

[F] ij =

⎡
⎣ 1 K 0

0 1 0

0 0 1

⎤
⎦ ,
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