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a  b  s  t  r  a  c  t

In  this  paper  we  study  the thermodynamic  efficiency  of  thermoelectric  generators  in  which  the  heat
transport  is driven  by phonons  and electrons.  It is  assumed  that  the  phonon  temperature  and  the  electron
temperature  are different,  and  that  the electric-charge  density  is nonuniform.  The mean  temperature  is
defined  by  observing  that the  internal  energy  of the  system  is  the  same  either  in the  presence  of two
temperatures,  or of one  temperature.  In steady  states,  we determine  the  influence  of the gradients  of
the mean  temperature  and  of  the  electric-charge  density  on  the  theoretical  values  of the  thermoelectric
efficiency.  The  physical  conditions  under  which  such  efficiency  is  optimal  are  determined  as  well.

©  2015  Elsevier  Ltd. All  rights  reserved.

1. Introduction

Thermoelectric effects involve a fundamental interplay between
electric and thermal properties of a system. The two primary ther-
moelectric effects are the Seebeck effect and the Peltier effect,
which can be used to derive all other thermoelectric effects when
combined with the laws of thermodynamics. The Seebeck effect
describes how a temperature difference creates a charge flow, while
the Peltier effect describes how an electrical current can create a
heat flow.

Since the initial discovery of those effects, in the early 1800s, a
solid theoretical foundation has been developed on thermoelectric
materials [1]. The efficiency of thermoelectric energy converters is
determined by the non-dimensional product ZT between the tem-
perature T, and the material parameter Z = �2�e/�, with � being the
Seebeck coefficient, �e the electrical conductivity, and � the ther-
mal  conductivity of the material, called figure-of-merit. Since the
higher ZT,  the higher the efficiency of a thermoelectric device, in
the last decades several studies have been developed in order to
improve Z. To date, the best reported ZT values are in the 2–3 range,
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and one of the current tasks in design of nanostructured materials is
to achieve ZT � 3, or larger. Although this is a good result, the range
of applicability of thermoelectric materials is still susceptible to be
extended.

The advent of nanotechnologies, on one side provides new
ways to enhance the performances of thermoelectric materials
(for example making nanocomposites, adding nanoparticles to
a bulk material, or employing one-dimensional nanostructures
[2,3]), and on the other side, it requires to revisit the theoretical
framework, since the physics at nanoscale shows several differ-
ent behaviors with respect to that at macroscale [4–8]. Thus,
the aim of the present paper is twofold, namely, to introduce a
new theoretical model for thermoelectric effects, and to study
its consequences on the efficiency of the thermoelectric energy
conversion.

The paper runs as follows. In Section 2 we present a two-
temperature model for thermoelectric rigid conductors, in which
the different heat carriers (i.e., the electrons and phonons in the
present paper) are allowed to have their own temperature. In Sec-
tion 3, under the previous hypothesis, we estimate the efficiency
of a one-dimensional thermoelectric generator, pointing out its
dependence on the presence of two  temperatures. The optimal
value of this parameter is calculated as well. In Section 4 we  sum-
marize the main results and point out the physical conditions under
which the performance of a thermoelectric device is enhanced.
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2. The two-temperature model

In the present section we develop a physical model for thermo-
electric effects starting from the observation that, since the heat
carriers (phonons and electrons in our case) behave as a mixture of
gases flowing through the crystal lattice [9,10], each of them may  be
endowed with its own temperature [11]. According to the theory of
fluid mixtures with different temperatures [12,13], we  assume that
each constituent obeys the same balance laws as a single fluid, in
such a way that the time rates of the internal energy of phonons per
unit mass up and of the internal energy of electrons per unit mass
ue, as well as the time rate of the electrical charge per unit mass
of electrons �e are governed by the following partial differential
equations

�∂tup = −∇ · q(p) (1a)

�∂tue = −∇  · q(e) + E · i (1b)

�∂t�e = −∇ · i (1c)

with � as the mass density of the conductor, E as the electric field,
and i as the electric-current density. Moreover, in Eq. (1a) q(p)

denotes the phonon contribution to the heat flux, and in Eq. (1b)
q(e) stands for the electron contribution to the heat flux [10]. They
are such that the overall heat flux reads q = q(p) + q(e).

According to the basic principles of Extended Irreversible Ther-
modynamics [6,8,14], the thermodynamic theory in which the
dissipative fluxes are considered as independent variables, we
assume that the fluxes q(p), q(e) and i are state variables, too.

Along with the results obtained in Ref. [11], we assume that the
evolution equations of those fluxes, respectively, are

�p∂tq(p) + q(p) = −�p∇Tp − �pe∇Te (2a)

�e∂tq(e) + q(e) = −�ep∇Tp − (�e + �e�	)∇Te

+ �e	

[
E − ∇

(

e

�e

)]
+
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e

�e

)
i (2b)

�i∂t i + i = −�e�∇Te + �e

[
E − ∇

(

e

�e

)]
(2c)

wherein 	 is the Peltier coefficient, �p, �e and �i are the relax-
ation times of phonons, electrons and electric current, respectively
[10,15], �p and �e are the contributions to the thermal conductivity
of the material due, respectively, to phonons and electrons [10,16],
and the material functions �pe and �ep express the contributions to
the thermal conductivity of the phonon-electron interactions [11].
Moreover, in Eq. (2), Tp is the phonon temperature, and Te is the
electron temperature, which are related to the average temperature
T of the system as follows [11]

T = c(p)
v Tp + c(e)

v Te

cv
(3)

with c(p)
v and c(e)

v being the phonon and the electron specific heats
at constant volume [17], respectively, and cv = c(p)

v + c(e)
v being the

specific heat at constant volume of the whole system [18]. Finally,


e = −�eTe
∂s

∂�e

(4)

is the chemical potential due to the electrons.
Then, if we introduce the following quantities⎧⎪⎨⎪⎩

 ̨ = c(e)
v
cv

; 1 −  ̨ = c(p)
v
cv

ˇ1 = Te

T
;  ˇ2 = Tp

T

(5)

from Eq. (3) we  have

˛ˇ1 + (1 − ˛)ˇ2 = 1 ⇔ ˇ2 = 1
1 − ˛

−
(

˛

1 − ˛

)
ˇ1 (6)

which clearly points out that if one is able to measure the sin-
gle heat-carrier temperature (for example Te, as suggested in
Ref. [11]), then it is also possible to estimate the other temperature,
provided that the average temperature T is known by experimental
measurements.

Whenever the relaxation times of the dissipative fluxes q(p),
q(e) and i are negligible, from Eqs. (2) the following constitutive
equations for thermoelectric effects arise:

q = −�p∇Tp − �e∇Te +
(


e

�e
+ 	

)
i (7a)

i = −�e�∇Te + �e

[
E − ∇

(

e

�e

)]
(7b)

with �p = �p + �ep, and �e = �e + �pe. The consequences of these
equations on the efficiency of thermoelectric energy conversion,
under the hypothesis of negligible 
e/�e, have been studied in
Ref. [11].

Here we  go deeper in that analysis, and account not only for
the effects due to the different temperatures, but also for those
due to the term 
e/�e. Nowadays, these effects play a relevant
role in the so-called “functionally graded materials” (FGMs) [19], in
which the material inhomogeneity is exploited to enhance the effi-
ciency of thermoelectric coupling [20–23]. Indeed, in recent years
FGMs, i.e., a new class of advanced materials with varying proper-
ties over a changing dimension, are attracting the attention of many
research groups. In FGMs the properties change continuously, or
quasi continuously, along one direction, and this implies that the
different material functions may  be assumed to be continuous, or
quasi-continuous. Their versatility allows the use of these materials
in thermoelectric applications, too. In particular, the efficiency of
thermoelectric devices can be improved by adjusting the carriers’
concentration along the material’s length. This can be achieved by
employing a functionally graded thermoelectric material (FGTM),
with the carriers’ concentration optimized for operating over a spe-
cific temperature gradient [20–23].

To achieve this task, we  first notice that, as proved in Ref. [11],
when the relaxation times of the fluxes are negligible, then the
specific entropy s only depends on the unknown variables up, ue

and �e. In this way, from the definition of chemical potential (see
Eq. (4)), it follows

e

�e
= f (up; ue; �e) (8)

Due to the relation (8), the chain rule allows to rewrite Eq. (7b)
as

i = −�e�̃∇Te −
(

�e�
∂f

∂Tp

)
∇Tp + �e

(
E − ∂f

∂�e

∇�e

)
(9)

wherein �̃ = � + ∂f/∂Te. We  notice that in deriving Eq. (9) we  used
the constitutive relations up = c(p)

v Tp and ue = c(e)
v Te.

The theoretical model for thermoelectric effects expressed by
Eqs. (7a) and (9) is able to account both for different heat-carrier
temperatures, and for a charge-carrier gradient.

3. Efficiency of thermoelectric nanowires

Motivated by the developments of research on new materials
[24], let us calculate the efficiency of a thermoelectric generator
arising from Eqs. (7a) and (9) for a one-dimensional nanodevice in
steady conditions. From the geometrical point of view, we repre-
sent the system as a segment of length L, and denote the position
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