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a  b  s  t  r  a  c  t

In  the  present  paper  there  is proposed  an  analytical  approach  to study  vibration  of  a  rectangular  elastic
wing  in the  stationary  stream  of  non-viscous  fluid.  We  first develop  a  basic  two-dimensional  integral
equation.  Then  a series  expansion  along  the  short  coordinate  is  applied.  This  reduces  the  problem  to an
infinite  set  of  one-dimensional  integral  equations  which  is studied  asymptotically  with  respect  to the
large  aspect  ratio parameter.  An  example  of  optimization  of thickness  of  the  wing  is demonstrated,  to
test  the efficiency  of the  proposed  method  in  applications.
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1. Introduction

Apparently, Leonardo da Vinci was the first who investigated the
question in which way flapping wings of birds provide thrust and
lift forces sufficient to fly. Nevertheless, until the beginning of the
20th century the problem of wing oscillations in fluid could not be
studied theoretically even in simple formulations. The thrust effect
of flapping wing was explained by Knoller [1] and Betz [2], inde-
pendently. Then the successor of Prandtl, Birnbaum [3] initiated a
thorough study of aerodynamic forces acting to the oscillating wing.
He introduced important concepts of free and bound vortices and
the concept of vortex drag. Theodorsen [4] developed a transient
aerodynamic theory of thin flapping airfoil. Garrick [5] further gen-
eralized this theory, to calculate the propulsive force of the flapping
wing. Some technical errors in the work of Garrick were identi-
fied by Peters and Johnson [6], besides these authors give in their
work a complete unsteady aerodynamic theory. An application of
this theory to analyze sinusoidal locomotion was demonstrated in
[7].

In 1935 Keldysh and Lavrentiev [8] for the first time applied to
the problem under consideration some methods of the theory of
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complex-valued analytical functions. Further development of this
theory was carried out by Sedov, Keldysh, Nekrasov, and Lavren-
tiev (see [9]). However, all investigations described above were
performed only in the two-dimensional case.

The passage to the three-dimensional transient (non-stationary)
theory complicates significantly the problem which, as vividly
expressed by Prandtl, is “a problem of transcendental difficulty”.
In 1938 Cicala [10] extends Prandtl’s theory of lifting vortices to
the case of transient flow. Among other results of good precision
and satisfactory confirmation by experimental data, one may  refer
to the work of Reissner [11] who applied Prandtl’s method of accel-
eration potential to these problems.

Some time later, various experimental techniques were applied,
to study flapping airfoils (see, for example, [12]). Moreover, recently
a number of direct numerical approaches have been developed and
applied to the discussed problems. A good survey of numerical as
well as collaborative experimental-numerical methods, with fur-
ther helpful references, can be found in [13,14]. It should be noted
that many recent works pay more attention to practical aspects of
flight, by establishing new mechanisms in flying of birds and insects
[15–18], by both theoretical and experimental techniques.

The present work is aimed at the study of harmonic oscillations
of the flapping rectangular elastic wing in a stationary flow. We
first develop a basic two-dimensional integral equation. Then for
large aspect ratio we apply a justified asymptotic method, to reduce
the equation to a set of one-dimensional integral equations. Finally,
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there is demonstrated an example of an optimization relatively to
the thickness of the wing.

2. Mathematical formulation of the problem

Let a thin flat wing of the size (−�, �) × (−c,c), rectangular in
plan, be placed into a homogeneous stream of non-viscous incom-
pressible fluid. The wing is modeled as an elastic beam of length
2l with the constant bending stiffness EJ and linear mass density
m.  A set of parallel linear rigid chords of equal length 2c is joined
to the beam, and the beam can only bend, so that all chords keep
parallel to each other (see Fig. 1), the beam thus is absolutely rigid
with respect to torsion.

Let the outer forcing be caused by harmonic oscillations of the
axis of symmetry x, so that the amplitude of the central displace-
ment W0 and the amplitude of the central inclination angle W1 are
known. Due to the outer forcing, the oscillations propagate along
the span of the wing. It is assumed that the oscillation process is
symmetric with respect to y, and the attack angle is zero. We  are
thus interested in the mechanism of the thrust force only, ignor-
ing lift. The perturbations introduced in the stream by the wing
are assumed to be small, so that the problem is studied in linear
approximation. Then all physical quantities are harmonic in time:
Ã(x, y, z, t) = Re{A(x, y, z)e−iωt}.

Let z = W̃(y, t) = Re{W(y)e−iωt} denote the function which
determines the shape of the wing. In the linear approximation it is
assumed that |dW/dy| � 1. If the side edges of the wing are free of
load, then the boundary conditions for the oscillating elastic beam
are:

W = W0,
dW

dy
= ±W1ei�, (y = ±0);

d2W

dy2
= d3W

dy3
= 0,

(y = ±�). (2.1)

As indicated above, quantities W0 and W1 designate, respec-
tively, the amplitude of the vertical oscillations and the angular
amplitude on the axis of symmetry, and � designates the phase
shift between the angular and the vertical oscillations.

The dynamic elastic behavior of the beam itself is defined from
the following differential equation:

EJ
∂4

W̃

∂y4
+ m

∂2
W̃

∂t2
= Z̃, ⇒ EJ

d4W (y)

dy4
− mω2W(y) = Z(y), Z(y)

=
∫ c

−c

(p− − p+)dx, (2.2)

where p− and p+ denote the hydrodynamic pressure distributed
under and above the wing, respectively.

The form of the wing oscillations as well as all other mechan-
ical characteristics are determined, on the one hand, by elastic

properties of the wing, and on the other hand, by hydrodynamic
interaction forces arising between the wing and the flow.

The linearized theory implies that perturbations of the velocity
and of the pressure are small compared to their values u0, p0 at
infinity (as x→ − ∞): v̄ = ū0 + v̄′, p = p0 + p′, |v′/u0| � 1, |p′/p0| � 1.
The hydrodynamic field is assumed to be potential in the whole 3d
space, outside the wing and the vortex wake. The latter stretches
along the stream to x =+ ∞ behind the wing, from its trailing edge.
This implies for the perturbed velocity vector: v̄′(x, y, z) = gradϕ.
Then the equation of continuity and the linearized Lagrange-
Cauchy integral imply, respectively

�ϕ  = 0;
∂ ϕ̃

∂t
+ u0

∂ ϕ̃

∂x
= − p̃′

�
, ⇒ −iωϕ + u0

∂ϕ

∂x
= −p′

�
, (2.3)

where � is the mass density of the fluid.
The hydrodynamic boundary conditions take the following

form. The perturbations vanish at infinity, hence the potential can
be accepted vanishing at infinity: ϕ → 0, (x → − ∞ , z → ± ∞). It is
interesting to notice that the potential does not vanish as x→ + ∞,
because of the vortex wake discussed above, which leads to discon-
tinuity of the tangential component of the velocity vector when
crossing the vortex wake. However, the pressure and the normal
component of the velocity are continuous, hence

p′
− = p′

+,
∂ϕ−
∂z

= ∂ϕ+
∂z

,  z = 0, (x, y) /∈ wing. (2.4)

The solid airfoil’s surface implies (W = W(y)):

∂W̃

∂t
+ u0

∂W̃

∂x
= ∂ ϕ̃

∂z
, ⇒ −iωW = ∂ϕ−

∂z
= ∂ϕ+

∂z
,

z  = 0, (x, y) ∈ wing. (2.5)

3. The basic integral equation

Here we  resolve the hydrodynamic problem. By combining a
classical treatment of the method of continuous [19] and dis-
crete [20] vortices with the two-dimensional Fourier transform
along variables x and y, boundary value problem (2.3)–(2.5) will
be reduced to a two-dimensional integral equation.

It follows from Eqs. (2.4) and (2.5) that ∂ϕ/∂z is even with respect
to z. Therefore, potential ϕ is odd with respect to z for all (x, y). Then,
obviously, the perturbation of the aerodynamic pressure p′ in (2.3)
is also odd with respect to z for all (x, y). It is thus sufficient to find
these basic functions only for positive z, for example.

By applying the two-dimensional Fourier transform with
respect to variables x and y, one obtains the differential equation:

	(˛, ˇ, z) =
∫ ∞

−∞

∫
ϕ(
, �, z)ei(˛
+ˇ�)d
d�,

∂2
	

∂z2
− (˛2 + ˇ2)	 = 0, (3.1)

Fig. 1. Flapping elastic wing in the homogeneous flow of a non-viscous incompressible fluid.
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