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a  b  s  t  r  a  c  t

Under  consideration  is  the  problem  of  size  and  response  of  the  representative  volume  element  (RVE)
of  spatially  random  linear  viscoelastic  materials.  The  model  microstructure  adopted  here  is  the  ran-
dom  checkerboard  with  one  phase  elastic  and  another  viscoelastic,  perfectly  bonded  everywhere.  The
method  relies  on  the hierarchies  of  mesoscale  bounds  of  relaxation  moduli  and creep  compliances  (Huet,
1995,  1999)  obtained  via  solutions  of  two  stochastic  initial  boundary  value  problems,  respectively,  under
uniform  kinematic  and  uniform  stress  boundary  conditions.  In general,  the  microscale  viscoelasticity
introduces  larger  discrepancy  in  the hierarchy  of  mesoscale  bounds  compared  to elasticity,  and  this
discrepancy  grows  as  the  time  increases.

©  2015  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

The prediction of macroscopic properties of randomly struc-
tured heterogeneous materials is of major importance in many
engineering applications. Evidently, any material displays hetero-
geneity on a micro scale and has properties depending on the
scale of approximating continuum. The key issue, which com-
monly arises when dealing with structure–property relations of
such materials is the validity of separation of scales of the continuum
mechanical model

d �
d <

}
L � Lmacro. (1)

Here L is the size of the so-called representative volume ele-
ment (RVE), d is the microscale, and Lmacro is the macroscale. The
RVE is clearly set up in two basic cases [6]: (i) a unit cell in a
periodic microstructure, and (ii) a domain containing infinitely
many microscale elements (e.g. inclusions) in a randomly struc-
tured medium.

This paper develops scale-dependent bounds on the effective
response of random composites for a linear viscoelastic material
with a two-phase, spatially random composition: a planar random
checkerboard microstructure, in which one phase is viscoelastic
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and another elastic, with perfect bonding everywhere. We  follow
the approach that originated with [2,10,11]: we deal with mesoscale
(or apparent) material properties of finite size domains subjected to
uniform boundary conditions of either kinematic or traction types.
In general, these properties are random and mesoscale-dependent,
and hence, such a domain is a statistical volume element (SVE). As
L/d increases, the SVE tends towards the RVE – case (ii) above. Of
interest is the evaluation of this trend from SVE to RVE in the time
domain; the frequency domain properties of this model problem
for a full range of volume fractions will be dealt with in a separate
and more extensive paper. The SVE-to-RVE scaling issue has already
been studied in many different settings besides linear elastic: con-
ductivity, physically nonlinear elasticity, finite (thermo)elasticity,
elasto-plasticity, permeability [6,8]. A theoretical basis for the vis-
coelastic setting was developed by Huet [3,4] and this forms a
stepping-stone for the present work, see also [5].

2. Problem formulation

2.1. Random microstructure

The random material is taken as a set of all the realizations B(ω)
parametrized by sample events ω of the � space

B = {B(ω); ω ∈ �}.  (2)

Any realization B(ω) of the composite B = {B(ω); ω ∈ �},  while spa-
tially disordered (i.e., heterogeneous), follows deterministic laws of
mechanics.

The spatial (volume-type) averages will be denoted by the over-
bar , while the statistical (or ensemble) averages by 〈 · 〉. That is, if
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Fig. 1. Sample realizations of the random, two-phase checkerboard on there L × L lattices.

we have a random (n-component, real valued) field � defined over
some probability space {�,  F , P} (with F being a �-field and P a
probability measure) and over some domain V in R

2 of volume V

� : � × X → R
n, (3)

the said averages are

�(ω) ≡ 1
V

∫
v

�(ω, x)dV 〈�(x)〉 ≡
∫

�

�(ω, x)dP. (4)

As the random material we take a so-called random chessboard
(or checkerboard) in two-dimensions, where each square cell of M
sites is occupied, independently of realizations at all other cells,
with probability p1 and p2 by phases 1 and 2, respectively. Clearly,
for a square lattice L × L = M,  the number of different realizations
is |�|  = 2L×L. Given the construction process, each ω occurs with
probability 1/2L×L. Technically speaking, it is a Bernoulli lattice pro-
cess with the probability p = 1/2. Fig. 1 shows sample realizations at
three different scales and a nominal volume fraction 50%. Indeed,
the latter is the numerical setting in our computational mechanics
reported below.

In the following, it will be convenient to work with a mesoscale,
a nondimensional parameter

ı = L

d
(d = size of one site) (5)

in the range [0, ∞),  so that BL/d, a mesodomain, will be written Bı,
etc. Thus, ı = 0 signifies the pointwise description of the material,
while ı→ ∞ is the RVE limit. The mesoscale random material is a set
of all the realizations Bı(ω) parametrized by sample events ω of the
� space

Bı = {Bı(ω); ω ∈ �}.  (6)

2.2. Governing equations

First, recall that the constitutive equations of linear viscoelas-
tic solids in the time domain are expressed in terms of temporal
Stieltjes convolutions:

�ij(t) =
∫ t

0

rijkl(t − �) : ˙�kl(�)d�, (7)

�ij(t) =
∫ t

0

fijkl(t − �) : ˙�kl(�)d�, (8)

where an overdot denotes the derivative with respect to time, while
the tensors rijkl(t) and fijkl(t) are the relaxation modulus and creep

Table 1
Properties of two  phases.

Type E � g1 �1

Mat  A Elastic 60 0.3
Mat  B Viscoelastic 30 0.3 0.9 0.25

Fig. 2. Relaxation moduli of both component phases.

compliance, respectively. With ◦ indicating the convolution integral,
Eqs. (7) and (8) can be expressed in a simplified indicial form:

�ij = rijkl ◦ �kl, (9)

�ij = fijkl ◦ �kl. (10)

Linear viscoelasticity of our random material is implemented
using the Prony series

gR(t) = 1 −
N∑

i=1

gi(1 − e−(t/�i)), (11)

where gR(t) is the normalized shear modulus which starts from
1 at t = 0 and then gradually decreases. gi and �i are parameters
that can be fitted to resemble the performance of a real relaxation
behavior. For illustrative purposes in the present study, the linear
viscoelasticity is assigned to one phase only and only one term in
(11) is considered – this corresponds to a generalized Maxwell (i.e.,
Zener) model. The other phase is kept elastic. There is perfect bond-
ing everywhere. Properties of both phases are given in Table 1. The
relaxation moduli of both phases are also plotted in Fig. 2. From the
figure, it can be concluded that the generated composite is like half
rigid elastic solids mixed with half relatively “soft” viscoelastic gel,
with the solids’ modulus twice that of the gel.
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