ELSEVIER

Contents lists available at ScienceDirect

Mechanism and Machine Theory

journal homepage: www.elsevier.com/locate/mechmachtheory

Research paper

Geometric isotropy indices for workspace analysis of parallel manipulators

Hao Xiong, Xiumin Diao*

School of Engineering Technology, Purdue University, West Lafayette, IN, USA

ARTICLE INFO

Article history: Received 20 December 2017 Revised 12 April 2018 Accepted 29 May 2018

Keywords: Parallel manipulator Workspace analysis Geometric isotropy Isotropy analysis

ABSTRACT

This paper addresses the isotropy of a workspace in terms of its geometric shape. Workspace isotropy analysis plays a crucial role in improving the quality of workspace for parallel manipulators. When a parallel manipulator is installed on a moving platform (e.g., satellites, aircrafts, ships, etc.), the geometry of its workspace is critical to achieve the planned tasks. This paper proposes three novel workspace isotropy indices, namely, translational workspace isotropy index (TWII), rotational workspace isotropy index (RWII), and entire workspace isotropy index (EWII), for workspace isotropy analysis in terms of the geometric shape of the workspace. All three indices are mathematically defined. TWII and RWII can be applied to both planar and spatial parallel manipulators with movable bases while EWII can work for planar parallel manipulators with movable bases. Random rotational disturbances are applied to the movable bases of multiple parallel manipulators in simulation. Simulation results show that the proposed workspace isotropy indices are effective in evaluating how isotropic the geometric shape of a workspace is. They are good at reflecting the robustness of a parallel manipulator to rotational disturbances to its movable base. The proposed indices can also be used as guidelines for the optimal design of parallel manipulators.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

A parallel manipulator has two platforms: the base and the end-effector. Anchor points on both platforms are paired and connected via rigid links for rigid-link parallel manipulators (RLPMs) or cables for cable-driven parallel manipulators (CDPMs) [1,2]. RLPMs have several advantages over serial manipulators, such as high stiffness, large payload, and high accuracy, promoting a wide range of applications [3–6]. RLPMs also have drawbacks such as small workspace, singularities inside the workspace, etc. [3]. Compared with an RLPM, a CDPM usually has larger workspace, lower inertia, larger payload, and more compact actuators. It is also modular, relatively inexpensive, and convenient for re-configuration and transportation [7]. CDPMs are suitable for many applications such as material handling and instrumentation [8–13], but the unidirectional constraint of cables (i.e., cables can pull but cannot push) also introduces many challenges in the design and control of CDPMs.

Technical issues of parallel manipulators, such as kinematics [14], singularity [15], workspace determination [16,17], configuration [18], and trajectory control [19], have been intensively investigated. However, workspace isotropy analysis of par-

E-mail addresses: xiong60@purdue.edu (H. Xiong), diaox@purdue.edu (X. Diao).

^{*} Corresponding author.

Nomenclature

 η_t Isotropy of the translational workspace on a specific s_r

 η_w Isotropy of the entire workspace on a specific s_r

a₁ Adjusted local rotational workspace

 $\mathbf{a_r}$ Space union set of adjusted local rotational workspace on a specific s_r

 A_{sr} Surface area or circumference of s_r

 $\mathbf{B_b}$ Length ratio of the bottom edges to the middle edges of the base polyhedron

 b_h Length of bottom edges of the base polyhedron

B_e Length ratio of the bottom edges to the middle edges of the end-effector polyhedron

 $oldsymbol{b_e}$ Length of bottom edges of the end-effector polyhedron

 e_h Length of edges between the vertexes in the middle and the bottom of the base polyhedron

 e_e Length of edges between the vertexes in the middle and the bottom of the end-effector polyhedron

 m_b Length of middle edges of the base polyhedron

 m_e Length of middle edges of the end-effector polyhedron

p_r Volume of the RWII-analysis spacer Distance of a position or a pose

 r_{max} Maximum distance of poses in the translational workspace r_{min} Minimum distance of poses in the translational workspace

 $\mathbf{s_r}$ Spherical surface or a circle on which all positions or poses have the same distance of r

t_d Translational workspace determination factor

 $\ddot{U_h}$ Length ratio of the top edges to the middle edges of the base polyhedron

 $\boldsymbol{u_b}$ Length of top edges of the base polyhedron

 U_e Length ratio of the top edges to the middle edges of the end-effector polyhedron

u_e Length of top edges of the end-effector polyhedron

 V_{a_l} Volume of a_l Volume of a_r

 $\mathbf{w_r}$ Volume of the rotational workspace

allel manipulators has seldom been touched. This paper deals with workspace isotropy analysis of parallel manipulators, regarding the geometric shape of the workspace.

Workspace isotropy analysis in terms of the geometric shape of the workspace is crucial for many applications in which the base of the parallel manipulator is movable. One of these application scenarios is that the base of a parallel manipulator is mounted on a movable platform, such as a satellite [24], a spacecraft [20], an Unmanned Aerial Vehicle (UAV) [21], and a ship [22], as shown in Figs. 1a–c. In these applications, the base of the manipulator moves together with the movable platform. As a result, the pose (i.e., position and orientation) of the parallel manipulator could be unknown or unpredictable for tasks to be executed due to an unexpected motion of the mobile platform. For example, a gust to the UAV in Fig. 1b may change the attitude of the UAV and make the parallel manipulator unable to reach the pose for aerial manipulation. Thus, it is difficult to determine in advance the ideal poses where the manipulator is convenient to perform these tasks [23]. If the workspace of a parallel manipulator is isotropic in terms of its geometric shape, then unpredictable attitude changes of the movable base of the parallel manipulator due to rotational disturbances applied to the base could be more easily compensated by the parallel manipulator itself.

Another application scenario is when multiple manipulators are connected in serial to conduct complex tasks, such as the cable-driven serial-parallel hybrid manipulators in [24–27]. A sample serial-parallel hybrid manipulator from [26] is shown in Fig. 1d. The isotropy of the workspace of the parallel manipulator in the first level has a decisive influence on the performance of the subsequent manipulators. The parallel manipulator in the first level with an isotropic workspace is a prerequisite for a robust control of subsequent manipulators. Hence, it is important to design the parallel manipulator in the first level such that its workspace is isotropic in terms of the geometric shape of the workspace.

The advantages of a parallel manipulator with isotropic workspace motivate the authors to work on isotropy analysis of parallel manipulators. To better understand and analyze workspace isotropy for parallel manipulators, a clear definition of workspace isotropy is essential. A robotic manipulator is said to be isotropic if its end-effector has the same properties in any arbitrary direction [23]. These properties include, but are not limited to, characteristics of kinematics, dynamics, force, and workspace. This paper proposes workspace isotropy indices to evaluate the workspace of a parallel manipulator in terms of its geometric shape. The workspace of a parallel manipulator is geometrically isotropic about a selected point, called isotropy analysis center (IAC) in this paper, if, with any arbitrary angle of rotation applied to the movable base of the parallel manipulator about the IAC, the workspace after the rotation overlaps the workspace before the rotation. It is assumed in this paper that the base of a parallel manipulator is movable and that the workspace of the parallel manipulator rotates, but does not deform, with the rotation of the movable base. The workspace of a parallel manipulator is assumed to be continuous, rather than a union of a few separated spaces.

Download English Version:

https://daneshyari.com/en/article/7178993

Download Persian Version:

https://daneshyari.com/article/7178993

Daneshyari.com