FISEVIER

Contents lists available at ScienceDirect

Mechanism and Machine Theory

journal homepage: www.elsevier.com/locate/mechmachtheory

Research paper

On the apex seal analysis of limaçon positive displacement machines

Truong H. Phung*, Ibrahim A. Sultan, Gayan K. Appuhamillage

School of Engineering, Faculty of Science and Technology, Federation University Australia, University Drive, Mount Helen, Victoria 3350, Australia

ARTICLE INFO

Article history: Received 11 January 2018 Revised 18 April 2018 Accepted 6 May 2018 Available online 26 May 2018

Keywords:
Rotary machine
Limaçon-to-circular
Limaçon
Circolimaçon
Limaçon motion
Pump
Gas expander
Compressor
Positive displacement
Seal
Apex seal
Seal vibration

ABSTRACT

Rotary machines, and limaçon machines in particular, offer a better power to weight ratio compared to reciprocating machines; however, leakage due to improper apex and side sealing have prevented rotary machines from thriving. In this paper, a modelling approach is presented to analyse the vibration of apex seal during the machine operation and the power loss caused by the seal friction. The seal and spring are modelled as a spring-mass system in which the seal deformation is negligible. The seal-groove relative positions have then been categorised into nine different possible cases based on the number of contact points between the seal and the seal groove. A case study has been presented to demonstrate the reliability of the model.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

In fluid processing machines, leakage through gaps separating different machine components is a major problem which adversely impacts machine performance. In rotary machines, leakage occurs mainly through the rotor-housing clearance and side gaps. Amrouche et al. [1] argue that sealing problem is a major disadvantage of the rotary engines. In order to prevent fluid leakage, limaçon rotary machines are equipped with apex seals and side seals. During machine operation, variable forces from the pressure differential between the working chambers, combined with the elastic, inertial and frictional effects, excite vibratory modes into the seals. The resulting vibration or "lift-off" and "poor contact" has been noticed by Matsuura, Terasaki, and Watanabe [5] who investigated the behaviour of apex seal against the housing surface. Seal vibration will vary the loading pattern between the seal, seal groove and the machine housing which will result in power loss due to friction. On the other hand, Pennock and Beard [6] considered that the friction between the side seal and the machine rotor is insignificant and can be ignored. The authors then went on to investigate the effect of crankshaft speed fluctuations on apex seal forces and concluded that this effect is also insignificant. Of note is that Pennock and Beard [6] did not include the

E-mail addresses: t.phung@federation.edu.au (T.H. Phung), i.sultan@federation.edu.au (I.A. Sultan), g.appuhamillage@federation.edu.au (G.K. Appuhamillage).

^{*} Corresponding author.

```
Nomenclature
                   limaçon chord
p_1p_2
                   limaçon chord length
21
C
                   centre of gravity of the seal
X_0Y_0
                   stationary frame
X_rY_r
                   frame fixed at the centre point of the rotor and moves with it.
                   rotating frame
X_1Y_1
\hat{i}, \hat{j}, and \hat{k}
                   unit vectors of the X_1, Y_1, and Z_1 axes
                   the frame attached to the seal centre of gravity with the unit vectors \hat{Y}_s and \hat{X}_s
X_{\varsigma}Y_{\varsigma}
                   a frame fixed to the groove. Also signifies the initial position of the seal-attached frame (X_sY_s) with
XY
                   unit vectors \hat{Y} and \hat{X}
                   limaçon pole
0
                   the seal origin
O_g
\theta
                   crank angle
                   radius of the base circle
r
                   centre point of the chord
m
                   housing radial distance
R_h
b
                   limaçon aspect ratio
                   machine's depth measured perpendicular to the page
Н
                   rotor angular velocity
ω
                   distance from the rotor chord centre point, m, to the seal's centre of gravity
L_i
\delta_s
                   initial deflection of seal spring
\delta_w
                   initial deflection of housing due to contact with seal
                   spring stiffness
k_s
                  the equivalent spring stiffness of the limaçon housing wall
k_w
c, c_r, c_w, and c_s damping coefficients (All typed in lowercase)
                   mass of the seal
m_{\varsigma}
F
                   force acting on the seal
                   pressure of the chamber above and below the rotor chord, respectively
P_a, P_b
A_p, A_f
                   areas of the seal that are exposed to the machine chambers
                   density of seal material
\rho_{s}
W_g
                   width of the seal groove
W_s
                   width of the seal
                   seal height (i = 1, 2, or blank)
d_{si}
                   rotor-housing clearance (Uppercase C)
C_r
                   portion of the rotor apex truncated to machine the seal groove
z
                   seal protrusion at the initial position
ζο
\chi, \dot{\chi}, \ddot{\chi}
                   seal linear displacement, velocity, and acceleration along X_r-axis
y, \dot{y}, \ddot{y}
                   seal linear displacement, velocity, and acceleration along Y_r-axis
                   seal angular displacement, velocity, and acceleration
\varphi, \dot{\varphi}, \ddot{\varphi}
                   special points on the apex seal (i = 1, 2, 3, ...)
S_i, C_i, i_i
                   points on the seal groove (i = 1, 2, 3, ...)
g_i
                   seal depth measured perpendicular to XY plane
B_{s}
```

gas pressure difference in their study but suggested that such a problem along with different machine starting conditions should be further investigated.

The work by Handschuh and Owen [4] suggested that the power loss of rotary machines is drastically affected by the crankshaft rotational speeds and the friction drag coefficient of the apex seal. The seal and rotary machine performance have been investigated from the viewpoint of lubrication and the trajectory of the seal's centre of mass [3,15]. These authors concluded that the increase of the rotor rotational speed is likely to decrease the range of maximum to minimum oil film thickness and will decrease the apex seal vibration amplitude. An outcome which reduces the wear of seal and housing surface.

From a different perspective, Warren and Yang [14] have proposed a deviation-function method for designing the rotary machine based on the apex seal geometry. The authors suggest that this approach will help improve the sealing capability and effectiveness which would impact the machine performance favourably. On top of that, the newly designed housing reduces forces on apex seal and reduces the wear of the seal and the housing surfaces. Knowing that the apex seal is prone to damage and failure, Rose and Yang [9] took on the challenge of redesigning the seal. They presented two approaches, a wider apex seal and a multi-apex-seal, designed to provide more stable configurations and improve seal effectiveness.

Download English Version:

https://daneshyari.com/en/article/7179022

Download Persian Version:

https://daneshyari.com/article/7179022

<u>Daneshyari.com</u>