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A B S T R A C T

Presented is Tredgold’s Approximation for using an equivalent cylindrical gear with spur teeth
to “approximate” a bevel gear with straight teeth. This relation is extended to spiral bevel
and hypoid gears by utilizing pitch surface curvature in the direction perpendicular to the
gear tooth spiral to establish an equivalent gear. Subsequently, the envelope of a planar gear
tooth profile in this perpendicular direction is presented. The envelope of the gear tooth pro-
file is used to determine fully conjugate gear teeth profiles for spatial gear elements. This
procedure is valid for any tooth profile along with circular and non-circular gears. To validate
the methodology, a virtual model of a bevel gear pair (“presented model”) is created and an
unloaded tooth contact analysis is performed. The procedure used to perform the unloaded
tooth contact analysis and determine the corresponding unloaded transmission error is based
on the concept of ease-off topography. An example of a face-milled bevel gear pair (“literature
model”) serves as a reference of correctness in determining the ease-off for unloaded contact.
To conclude the paper, the obtained ease-off topography and unloaded transmission error of
the presented model are calculated and displayed, demonstrating the specification of fully
conjugate teeth.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

A gear pair consists of two (wheeled) bodies in direct contact to facilitate general motion transmission between rotating
axes. The part of the wheel where the two bodies are in direct contact is known as the gear tooth. The majority of such sce-
narios involve uniform motion between parallel axes. When this occurs, the bodies are cylindrical and the gear tooth shape is
determined by establishing mathematical relations in a plane perpendicular to the gear axes of rotation. This planar surface is
known as the transverse plane for cylindrical gears. The term planar gearing is commonly used when referring to such motion
transmission due to the planar mathematical relations used to establish the gear tooth shape.

A generalized gear pair can be used to achieve motion transmission between two skew axes. Cylindrically shaped wheeled
bodies result when the two rotation axes are parallel. Conically shaped wheeled bodies result when the two rotation axes
intersect. Lastly, hyperboloidally shaped wheeled bodies result when the two rotation axes are not parallel nor intersect. These
hyperboloidally shaped wheels degenerate into cylinders for motion transmission between parallel axes and cones for motion
transmission between intersecting axes. The specification of two surfaces in direct contact that ensure 100% perfect motion
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transmission between skew axes has been a goal of many researchers and no known methodology exists to singly determine
the geometry of two such conjugate surfaces.

Gear tooth shape for cylindrically shaped wheeled bodies has been researched for centuries and research in this area contin-
ues today, especially with micro-geometry and tooth profile modifications. The premises for determining conjugate gear teeth
are to mathematically describe its shape and obtain a relation between the gear tooth shape, the line of force between two gear
teeth in direct contact and the desired angular displacement ratio between the two axes of rotation. For planar gearing, such
a relation is frequently referred to as Euler’s law of gearing. This process is used throughout the world today. To the authors’
awareness, no known procedure exists that extends this approach to an applicable procedure to include hyperboloidal gears.

It is viable to specify the shape of one body (say the input gear tooth) and obtain the shape of its “conjugate” mating (output
gear tooth) body that ensures desired motion transmission between skew axes. This process is known as the envelope of one
body relative to another. In the gearing community, this process is referred to as the equation of meshing. This methodology
differs from the above methodology using Euler’s law of gearing to establish conjugate gear teeth geometry. Tooth determination
via the Euler’s law of gearing approach enables the specification of the gear tooth shape (viz., involute, cycloid, and circular-
arc) along with path of contact, pressure angle, helix angle, and contact ratio. Knowledge of such features is used to study gears
and reduce their costs and size, increase reliability, as well as reduce noise and vibrations. Tooth determination via equation of
meshing is the basis in today’s face cutting process used to fabricate spiral bevel and hypoid gears. Inherent in this equation of
meshing process is the inability to determine conjugate gear teeth independent of each other.

Gear designers have introduced an ease-off function to obtain an appropriate tooth profile modification to achieve conjugate
motion for gears produced using a face cutting process. In this case, gear designers iteratively obtain gear tooth geometry by
using the equation of meshing and evaluating the loaded tooth contact between the two gears. A limitation of this methodology
can be highlighted by recognizing the need to post process such gear elements. Today, it is possible to produce spiral bevel and
hypoid gears via contour milling using a 5-axis CNC machine. Interestingly, conjugate gear tooth geometry is typically based on
emulating a “successful” face cut gear.

This paper presents the first known methodology that provides gear designers the ability to mathematically specify two
gear teeth independent of each other and ensure perfect motion transmission when engaged in mesh. The mathematical model
(“presented model”) makes use of a special spiral angle on pitch surfaces. The envelope of a planar gear element in a direction
perpendicular to the gear tooth spiral is presented to obtain fully conjugate surfaces in direct contact for motion transmission
between skew axes. The unloaded transmission error for motion transmission is presented and used in an illustrative example
to demonstrate this procedure. The methodology begins by revisiting Tredgold’s Approximation.

2. Tredgold’s Approximation

Tredgold’s Approximation is presented in many books on gear design for determining the pitch radius and number of teeth
that result in an equivalent “bevel” (conical) gear. Implicit is that the pitch radius and number of teeth are for a spur cylindrical
gear element. Cylindrical gears are the simplest and most common of the various gear types (viz., bevel, hypoid, worm, worm-
wheel, and non-circular). Conjugate tooth action for spur cylindrical gears can be easily described and understood using planar
geometry. The exact coordinates for a bevel gear’s tooth shape along with its varying thickness require an added level of math-
ematical detail to properly account for its shape and varying tooth thickness. So, it is common to approximate bevel gears with
an equivalent spur cylindrical gear to facilitate design. Quantitative expressions are presented to extend this approximation to
include spiral bevel and hypoid gear elements. A historical overview of Tredgold’s Approximation can be found in the Appendix.

Tredgold’s Approximation was initiated to describe spur bevel gears with involute teeth. Although originally specified for
involute teeth, Tredgold’s Approximation is applicable to other tooth profiles (viz., cycloid and circular-arc). Radzevich pro-
posed extending Tredgold’s Approximation to include “crossed axes” gearing by introducing a sphere centered at the intersection
between the generator of the pitch surfaces and the common perpendicular to the two axes of rotation [1]. Radzevich used this
sphere to generate an equivalent bevel gear pair and did not consider the spiral angle. Apart from Tredgold’s Approximation,
Figliolini and Angeles investigated the path of contact for involute bevel gears on the surface of a sphere and contrasted involute
teeth to a crown rack with “flat flanked” teeth [2]. Stachel joined Figliolini and Angeles and together they proposed cycloidal
teeth for a certain class of spatial gear elements [3]. Part of this work is rooted in involute gears as suggested by Phillips [4].
More recently, the three redirected their effort to a broader class of gear tooth profiles with line contact (vs point contact) by
investigating the instantaneous motion of the common generator between two axodes [5].

Depicted in Fig. 1 is a representation of a bevel gear set in mesh. The outer radii rp and rg of the conical axodes are used to
define an equivalent spur cylindrical gear set with the same speed ratio. The speed ratio g for a bevel gear set can be defined
accordingly:
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The equivalent pitch radii req_p and req_g for the cylindrical gear elements are

req_p =
rp

cosap
(2)
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