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A B S T R A C T

This work is concerned with the design of planar frames consisting of rigidly connected beams so that their
ending point, which oscillates in the same plane, is characterized by equal stiffness in all directions.
Consequently, when being under the action of a static force in the same plane, this point lies on a circle. Its
additional property is concerned with equal frequency of vibration not only along the principal axes, but in every
direction in the plane. Besides theoretical analytical considerations and a generalization of the approach, this
study also provides numerical and experimental analyses and validations.

1. Introduction

One of the main physical parameters of vibrating structures is their
stiffness. In order to determine equivalent stiffness characteristics of
their corresponding oscillatory mechanical models, one can use three
approaches: i) energy methods, ii) force-displacement relationships
known from the theory of Strength of Materials, and iii) experimental
techniques. Energy methods, in a nutshell, are related to the approach
in which a simplified conservative model (for instance, lumped-para-
meter of reduced number of degrees of freedom) is established such that
its kinetic energy and potential energy are equal to that of the original
structure [1,2]. The stiffness parameter (spring constant) of certain
elastic structural elements can sometimes be determined analytically
based on known relationships between force/torque, resulting de-
formations in axial loading, torsion and bending, as well as Cas-
tigliano’s theorem [1,3–5]. However, these analytical considerations
may sometimes be too cumbersome or even impossible, and the stiff-
ness parameters need to be obtained experimentally [6,7].

In this work, we develop an analytical approach based on
Castigliano’s theorem imposing a special property for elastic planar
frames under consideration: their ending point should have equal stiff-
ness in all directions. This property of equal stiffness in all directions is
motivated by its practical utilizations, one of which is associated with
isochronous systems in which an isotropic elastic property is needed
[8]. The design of an original basic model is presented in Section 2, and
its modified version for manufacturing requirements, is given in Section
3. The performance characteristics of the former model are validated
numerically, and of the latter model experimentally. The generalization
of the approach with additional examples is provided in Section 4. The

importance of accurate design and manufacture is highlighted through
the whole study. Besides the originality of the consideration and the
models obtained, the additional advantage achieved is in their potential
use on the full range of length scales, from nano-systems to large-scale
systems.

2. Basic model and FEM validation

2.1. Theoretical considerations

This section deals with designing geometric parameters of a two-
element frame so that its ending Point E (Fig. 1a) has equal stiffness
properties in all directions. The frame is assumed to have bending
stiffness EI (E is Young’s modulus of elasticity and I is the area moment
of inertia of the cross-section). Its elements are beams rigidly attached
to each other, while the first one is clamped. The aim is to determine
the length of the second beam, i.e. the parameter ξ and the angle β
between the beams so that the stiffness at Point E is equal in all di-
rections.

The first step of the analysis is to obtain the value of ξ so that the
principal axes have the directions labelled by I and II in Fig. 1b [9,10],
independent of the value of β. A constant static force F acting at Point E
is introduced (Fig. 1c). If it acts collinearly with the principal axes, it
results in the displacement of Point E only along the axes. These dis-
placements are either maximal or minimal [9]. The extreme displace-
ments of Point E is labelled by δI when φ=0, and by δII when φ= π/2.
These displacements will be calculated based on the strain energy
consideration.

The strain energy U is defined by:
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where the bending moments expressed in terms of the coordinates z1
and z2 (Fig. 1c) along two elements are as follows:
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Substituting Eq. (2) into Eq. (1), one has:
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The displacement δ in the direction of the force is obtained as
δ= ∂U/∂F:
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Using the fact that the displacements along the principal axes cor-
responding to φ=0 and φ= π/2 have extreme values, one has:
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These expressions will be equal mutually when:

1− 3ξ2− ξ3= 0. (6)

This cubic polynomial has only one root that is positive and it is
found to be:

ξ= 0.53209. (7)

This value defines the length of the second beam: its length is about
53% of the length of the first one.

Let us obtain now the angle β. Introducing Eq. (7) and φ=0 into
Eq. (4), one obtains the displacement along the principal axis I in terms
of the angle β:
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Substituting Eq. (7) and φ= π/2 into Eq. (4), one derives the dis-
placement along the principal axis II in terms of the angle β:
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Graphical presentations of the displacements given by Eqs. (8) and
(9) divided by Fl3/EI are shown in Fig. 2a for 0 < β < π.

It is seen that if the angle β increases, the displacement δI increases

as well, while the displacement δII decreases. There is a value of β for
which these two displacements are equal. The enlarged part of the
corresponding region is plotted in Fig. 2b, which implies:
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The solution of this equation is:

β= 0.64661=37.048°. (11)

Substituting ξ= 0.53209 and β= 0.64661 into Eq. (4), one obtains

=δ Fl
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3

(12)

Knowing that the corresponding stiffness is k= F/δ, one can finally
derive that the stiffness at Point E in all directions is given by:

=k EI
l

8.2648 .3 (13)

The frame whose ending Point E has equal stiffness all directions is
shown in Fig. 3a with its characteristic parameters. The equivalent
model for the motion of Point E is shown in Fig. 3b, c. In Fig. 3b, the
mechanical model for in-plane vibration of Point E is the system with
two orthogonal springs of stiffness k given by Eq. (13), but their initial
directions correspond to two orthogonal springs coinciding with the
principal axes (note that this model with two orthogonal springs coin-
ciding with the principal axes is the only one valid when the stiffness
coefficients are different; when the stiffness coefficients are equal mu-
tually, two orthogonal springs can take an arbitrary position [9,10]).
Thus, as the stiffness is equal in all directions, any other initial position
of these two orthogonal springs is also possible here, as illustrated in
Fig. 3c.

Remark. It is interesting to note that the expressions given by Eqs. (8)
and (9) enable one to illustrate the extreme displacements along the
principal axes, which actually define ‘the ellipse of displacement’ [9,10]
– the displacement of Point E under the action of a static force F. These
extreme values are calculated by introducing =C Fl EI/( )3 and
presented in Table 1. These values are further illustrated in Fig. 4,
which shows how this ellipse of displacement changes with the angle β.
It is seen that the ellipse turns into the circle for the value given by Eq.
(11), as the extreme displacements are then equal. This figure also
points out the necessity to obey the parameters calculated to achieve
the behaviour desired – equal stiffness in all directions and the circle as
the locus of the displacements under the action of the static force. The
ellipses illustrated in Fig. 4b and d confirm that the circle transforms
into an ellipse if the angle β is slightly changed from the calculated
value.

2.2. FEM analyses

A structure illustrated in Fig. 3a is analysed by FEM (Software Midas
NFX 2015 R1) with the parameters: the number of nodes= 116, the
number of elements= 115, the number of degrees of freedom=696.
The material was chosen to be 50CrV4 (E=200,000 N/mm2,
ρ=7850 kg/m3); the length of Element 1 is l=150mm; the cross-
section is circular with the diameter D=1mm; Eqs. (7) and (11) define
the parameters ξ and β. The static force of 0.1 N is applied at Point E in
the directions of two principal axes I and II (Fig. 1b) in two cases: when
β= 37.048° (this is the value given by Eq. (11)) and when the angle
does not respect the theoretically derived value, i.e. when β= 45°. In
the former case, the displacements of Point E in the directions of the
principal axes are found to be approximately 4.16mm and equal mu-
tually. Note that Fig. 5a and b has the deformations presented as
multiplied so that they are clearly visible, but the emphasis here is on
the quantitative measure of the displacement of Point E along the
principal axes. Thus, Fig. 5a shows this measure in the direction of the

Fig. 1. a) Two-element frame under consideration; b) Two principal axes I and II at Point
E; b) Static force F acting at Point E.
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