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A B S T R A C T

Computer controlled optical surfacing requires accurate tool influence functions (TIFs) for deterministic fabri-
cation of smooth curved surfaces. In the present paper, the three dimensional TIFs are investigated separately
from their radial profiles, which can be simplified into circular arcs. TIFs are found significantly affected by the
form deviation between the polishing pad and the workpiece, regardless of the specific shape of the workpiece. A
new analytical TIF model is proposed as a function associated with the relative curvature difference. The con-
dition to guarantee single-peak TIFs is then derived, which is of essence for stable planning of polishing paths.
Thereby appropriate processing parameters can be selected accordingly. Practical experimental results de-
monstrate that the new model can reliably predict the TIFs in different situations, and the modelling error is
greatly improved compared to the conventional methods.

1. Introduction

Complex curved surfaces such as aspheric and freeform surfaces
with high form accuracy have become the key features of optical
components increasingly employed in the fields of astronomical ob-
servation and opto-electronic industries [1–3]. Polishing is an essential
step of optical fabrication. The form errors with respect to the nominal
shapes are reduced with the computer controlled optical surfacing (C-
COS) [4,5] first proposed by Itek Inc. in 1970s. In CCOS the polishing
process is regarded as a convolutional operation between the tool in-
fluence function (TIF) and the dwell time function [6,7]. Thus TIF plays
an important role in the path planning and quality control of CCOS
polishing. Usually a single-peak TIF is required to obtain higher surface
quality in deterministic fabrication.

At present, a commonly used method to determine polishing TIFs is
the trial-and-error approach [8,9]. The polishing tool is fixed first at a
particular location to polish the workpiece for some time, and then the
TIF can be calculated based on the relative difference between the
surface forms before and after fabrication. For the small-tool polishing,
TIFs are significantly affected by the degree of conformance between
the forms of the polishing pad and the workpiece [10]. As a result this
method is no longer suitable for polishing complex curved surfaces
because the local forms vary at different regions of the workpiece
surface, which leads to a region-dependent TIF. As it is infeasible to
measure the TIF at every position of the workpiece, hence in practice

only the TIFs sampled at several points are sampled for planning the
polishing path. In this approach the form errors of the workpieces
cannot converge rapidly due to the inaccurate estimation of actual TIFs.
Therefore an accurate model is urgently required to predict the TIFs in
the polishing of complex curved surfaces.

This paper is organized as follows. The theoretical background of
the sub-aperture polishing is presented in Section 2. The proposed TIF
model is derived in Section 3 and the allowable range of the curvature
difference is given for single-peak TIFs in Section 4. Section 5 presents
experimental demonstration. Finally the paper is summarized in Section
6.

2. Theoretical background

In the field of optical polishing, the material removal depth per unit
time can be calculated by the Preston equation [11]

= ⋅ ⋅ ⋅z x y k p x y V x y td ( , ) ( , ) ( , ) d (1)

where dz(x,y) is the material removal depth, and k is the Preston
coefficient related to the particular polishing conditions. p(x,y) denotes
the pressure in the contact region and V(x,y) is the relative velocity
between the workpiece and the pad.

The relative velocity can be obtained by the characteristics of the
dual-rotation motion of the polishing tool [12]. The kinematic relation
is shown in Fig. 1. The center of the orbital motion is O1 and the center
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of the tool is O2. The angular velocities of the orbital motion and the
spin motion are ω1 and ω2, and r0 and ρ denote the tool radius and the
eccentric distance, respectively.

According to Fig. 1, the relative velocity distribution can be derived
by the following equation,
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Here R is radius coordinate associated with an arbitrary point P in the
polar coordinate system originated at O1. f denotes the speed ratio and e
is the eccentricity.

3. Modeling of TIFs for different form deviations

3.1. TIF model for curved surface

The TIFs for polishing complex curved surfaces are significantly
affected by the degree of conformance between the forms of the pol-
ishing pad and the workpiece, which leads to the region-dependent
pressure distribution, as shown in Fig. 2.

Considering the form deviations between the pad and the workpiece
are usually small in practice, thus the shear stress can be neglected in
calculation, and only the normal stress is considered. According to the
material mechanics theory [13], it is intuitive to understand that the
stress is proportional to the relative form deviations; hereafter the
pressure distribution can be calculated by the following equations
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where δ(x,y) denotes the form deviation between the pad and the
workpiece and F is the magnitude of the force applied on the polishing

pad. E and L are the Young's modulus and thickness of the pad. d0 is the
displacement of the pad when the force is applied.

In practice the polishing pad can tilt according to the local slope at
the contacting area of the workpiece, thus the form deviations are al-
ways measured along the normal vectors of the workpiece. The max-
imal and minimal principal curvatures C and C’ of the form deviations
are calculated, and then the form deviations can be classified into three
cases accordingly [14], as shown in Fig. 3.

Based on the pressure model and Equations (1)–(3), the TIFs of
complex curved surfaces can be calculated. The normalized TIFs cor-
responding to the above three classes of form deviations are shown in
Fig. 4, with eccentricity e= 0.6, speed ratio f= −3, force F = 10 N,
pad thickness L = 2 mm, Young's modulus E = 80 MPa and tool radius
r0 = 12.5 mm.

3.2. Simplification of the TIF model

In most cases, the surfaces of polished workpieces are slow-varying
smooth surfaces. Thus the radial profiles of the pad and the corre-
sponding local area at the workpiece can be regarded as circular arcs,
then a radial profile of the TIF of complex curved surfaces is equivalent
to that of the TIF of spherical surfaces with the same radius of curva-
ture. This means the above TIF model can be simplified by investigating
its two-dimensional profile obtained by polishing simple spherical
surfaces. Henceforth the pressure distribution p(x,y) and form deviation
δ(x,y) are rewritten as p(r) and δ(r). Assume that the radii of curvature
of the polishing pad and the workpiece are rp and rw, respectively. The
schematic diagram is shown in Fig. 5.

The form deviation can be expressed as Eq. (4)
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where r is the radius coordinate associated with an arbitrary point in
the polar coordinate system originated at O2. Here the function sgn(x)
reflects the concavity of surface shapes.

For most optical components, the radius of curvature is generally
much greater than the aperture of the component, i.e. |ra| ≫ r. Thus the
circular arc can be approximated into a quadratic function
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where κ represents the curvature, which is the reciprocal of the radius
of curvature.

Substituting Eq. (5) into Eq. (4), we can obtain

Nomenclature

z Material removal amount
k the preston coefficient
p the pressure distribution
V the relative velocity distribution of the workpiece
f the speed ratio of polishing tool
e the eccentricity of polishing tool
ω1 the angular velocity of the orbital motion
ω2 the angular velocity of the spin motion
r0 the radius of the tool
ρ Eccentric distance
δ the form deviation between the pad and the workpiece
F the magnitude of the force applied on the polishing pad

E the young's modulus of the pad
L the thickness of the pad
d0 the displacement of the polishing head
C the maximal principal curvatures of the form deviations
C’ the minimal principal curvatures of the form deviations
rp the radius of curvature of the polishing pad
rw the radius of curvature of the workpiece
κp the curvature of the polishing pad
κw the curvature of the workpiece
Δκ the curvature difference between the polishing pad and

the workpiece
σ a measure to determine whether the TIF is of single-peak
Δ the relative error of the TIF model

Fig. 1. Schematic diagram of the dual-rotation motion.
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