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a  b  s  t  r  a  c  t

Self-excited  vibration,  or chatter,  is an  important  consideration  in  machining  operations  due  to  its  direct
influence  on  part  quality,  tool  life, and  machining  cost.  At low  machining  speeds,  a  phenomenon  referred
to  as  process  damping  enables  stable  cutting  at higher  depths  of  cut  than predicted  with  traditional  ana-
lytical  models.  This  paper describes  an  analytical  stability  model  which  includes  a  process  damping  force
that  is  dependent  on  the surface  normal  velocity,  chip  width,  cutting  speed,  and  an  empirical  process
damping  coefficient.  Model  validation  is  completed  using  time  domain  simulation  and  turning  exper-
iments.  The  results  indicate  that  the  multiple  degree  of  freedom  model  is able  to  predict  the  stability
boundary  using  a  single  process  damping  coefficient.

© 2016 Elsevier  Inc.  All  rights  reserved.

1. Introduction

Process damping is a phenomenon that enables increased
depths at cut at low cutting speeds in machining operations. When
its effect is added to the analytical stability lobe diagram, a valu-
able predictive capability is afforded to process planners for a priori
selection of machining parameters. It enables process planners to
select stable {spindle speed, depth of cut} combinations for both:

• hard-to-machine materials, that are restricted to low cutting
speeds due to prohibitive tool wear, and, therefore, cannot cap-
italize on the increased depths of cut observed in traditional
stability lobe diagrams at higher spindle speeds; and

• high machinability materials that are able to take advantage of the
increased depths of cut at the “best spindle speeds”, which occur
at rotating frequencies which are substantial integer fractions
of the natural frequency that corresponds to the most flexible
structural mode of vibration.

Nearly 50 years of experimental and theoretical investigations
have yielded a phenomenological understanding of process damp-
ing. Pioneering work was completed by Wallace and Andrew
[1], Sisson and Kegg [2], Peters et al. [3], and Tlusty [4]. These
studies identified process damping as energy dissipation due to
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interference between the cutting tool relief, or clearance, face
and the machined surface during the inherent relative vibration
between the tool and workpiece. It was  hypothesized that process
damping increases at low cutting speeds because the number of
undulations on the machined surface between revolutions (turn-
ing) or teeth (milling) increases, which also increases the slope of
the wavy surface. This leads to increased interference and, conse-
quently, increased energy dissipation.

Follow-on work has included a plowing force model based on
interference between the tool’s relief face and workpiece surface
[5], application of the plowing force model to milling [6–9], a mech-
anistic description of the shearing and plowing force contributions
to process damping [10], and a first-order Fourier transform rep-
resentation of the tool-workpiece interference [11,12]. In [13,14],
a numerical simulation of a nonlinear process damping stabil-
ity model was  presented, while [15] provided an experimental
investigation of a nonlinear process damping model. Experimen-
tal identifications of a process damping model were presented in
[16,17]. This study builds on the analyses presented in [18–20].

In this paper, an analytical stability analysis is presented that
enables multiple degree of freedom (DOF) structural dynamics to
be considered, while describing the process damping force in the
surface normal direction as a function of the depth of cut, the cutting
speed, the tool velocity, and a single empirical coefficient. Because
the process damping force is based on the surface normal velocity,
which, in general, includes contributions from both orthogo-
nal dynamics directions, a coupled dynamic system is obtained.
The analytical solution for turning is presented in the following
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Fig. 1. Turning model with a single DOF in two orthogonal directions.

sections. Validation of the algorithm using time domain simulation
and experiments is provided.

2. Stability algorithm

2.1. Single DOF in two directions

The turning model with a single DOF in two orthogonal direc-
tions is depicted in Fig. 1. The two mode directions, u1 and u2, are
oriented at the angles ˛1 and ˛2, respectively, relative to the sur-
face normal direction, y. The cutting force, Fc, is oriented at the force
angle ˇ. The variable component of the cutting force is described by
Eq. (1), where Ks is the specific cutting force coefficient, b is the com-
manded chip width, Y0 is the vibration amplitude in the y direction
from the previous revolution, and Y is the current vibration ampli-
tude. The difference between Y0 and Y identifies the variable chip
thickness due to the vibration from one revolution to the next and
provides the basis for regenerative chatter. The mean component of
the cutting force is excluded because it does not influence stability
for the linear analysis presented here.

Fc = Ksb(Y0 − Y) (1)

The assumption for Eq. (1) is that there is no phase shift between
the variable force and the chip thickness. This is indicated by the
real values of b and Ks. However, it has been shown that a phase shift
can occur at low cutting speeds. This phenomenon is captured by
the inclusion of the process damping force, Fd, defined in Eq. (2) [17],
where C is the process damping coefficient, V is the cutting speed,
and ẏ is the tool velocity in the y direction. The process damping
force is oriented in the y direction and opposes the cutting force (as
projected in the y direction). In other words, it is a viscous damping
force. Therefore, the process damping force is used to modify the
structural damping and obtain an analytical stability solution.

Fd = −C
b

V
ẏ (2)

To proceed with the solution, the cutting and process damping
forces are projected into the u1 and u2 directions as shown in Eqs.
(3) and (4), where Fc1 and Fc2 are the cutting force components in
the u1 and u2 directions.

Fu1 = Fc cos(  ̌ − ˛1) − C
b

V
ẏ cos(˛1) = Fc1 − C

b

V
ẏ cos(˛1) (3)

Fu2 = Fc cos(  ̌ + ˛2) − C
b

V
ẏ cos(˛2) = Fc2 − C

b

V
ẏ cos(˛2) (4)

The time domain equations of motion for the two  directions
are provided in Eqs. (5) and (6), where mi, ci, and ki, i = 1, 2, are
the mass, viscous damping coefficient, and stiffness for the single
DOF structural dynamics. In these equations, one overdot indicates
one time derivative (velocity) and two overdots indicate two time
derivatives (acceleration).

m1ü1 + c1u̇1 + k1u1 = Fc1 − C
b

V
ẏ cos(˛1) (5)

m2ü2 + c2u̇2 + k2u2 = Fc2 − C
b

V
ẏ cos(˛2) (6)

The y direction velocity can be written as a function of the veloc-
ities in the u1 and u2 directions as shown in Eq. (7). Substitution of
Eq. (7) into Eqs. (5) and (6) yields Eqs. (8) and (9). Even though the
structural dynamics are uncoupled (orthogonal), the equations of
motion for the two directions are now coupled through the u̇1 and
u̇2 velocity terms.

ẏ = u̇1 cos(˛1) + u̇2 cos(˛2) (7)

m1ü1 + c1u̇1 + k1u1 = Fc1 − C
b

V
(u̇1 cos(˛1) + u̇2 cos(˛2)) cos(˛1) (8)

m2ü2 + c2u̇2 + k2u2 = Fc2 − C
b

V
(u̇1 cos(˛1) + u̇2 cos(˛2)) cos(˛2) (9)

By assuming a solution of the form u1(t) = U1eiωt for harmonic
motion, Eqs. (8) and (9) can be rewritten in the frequency domain (ω
is frequency). The results are provided in Eqs. (10) and (11), where
the U1 and U2 terms have been grouped on the left hand side in
both equations and the eiωt term has been dropped from both sides
in each case.(

−m1ω2 + iω
(

c1 + C
b

V
(cos(˛1))2

)
+ k1

)
U1

+ iω
(

C
b

V
cos(˛1) cos(˛2)

)
U2 = Fc1 (10)

(
−m2ω2 + iω

(
c2 + C

b

V
(cos(˛2))2

)
+ k2

)
U2

+ iω
(

C
b

V
cos(˛1) cos(˛2)

)
U1 = Fc2 (11)

These equations are arranged in matrix form as shown in Eq.
(12), where:

• a11 =
(
−m1ω2 + iω

(
c1 + C b

V (cos(˛1))2) + k1
)

• a12 = iω
(

C b
V cos(˛1) cos(˛2)

)
• a21 = a12
• a22 =

(
−m2ω2 + iω

(
c2 + C b

V (cos(˛2))2) + k2
)

.

[
a11 a12

a21 a22

]  [
U1

U2

]
=

[
Fc1

Fc2

]
(12)

Using complex matrix inversion on a frequency-by-frequency
basis, the direct and cross frequency response functions (FRFs) for
the coupled dynamic system are obtained as shown in Eq. (13). The
direct FRFs are located in the on-diagonal positions and the cross
FRFs are located in the off-diagonal positions; the cross FRFs are
equal because the inverted matrix is symmetric.

[
U1

U2

]
=

[
a11 a12

a21 a22

]−1 [
Fc1

Fc2

]
=

⎡
⎢⎣

U1

Fc1

U1

Fc2

U2

Fc1

U2

Fc2

⎤
⎥⎦

[
Fc1

Fc2

]
(13)

Tlusty [21] provided a frequency domain stability solution for
regenerative chatter in turning, which defines the limiting stable
chip width, blim, using Eq. (14), where Re(Gor) is the negative portion
of the real part of the oriented FRF, Gor. This oriented FRF represents
the projection of the cutting force into the mode direction and then
the projection of this result in the surface normal direction.

blim = −1
2KsRe(Gor)

(14)

To relate the frequency-dependent blim vector to the spindle
speed, ˝,  Eq. (15) is applied to determine the relationship between
and the valid chatter frequencies, fc (i.e., those frequencies where
Re(Gor) is negative). In this equation, N = 0, 1, 2, . . . is the inte-
ger number of waves per revolution (i.e., the lobe number) and
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