
Please cite this article in press as: Panas RM.  Large displacement behavior of double parallelogram flexure mechanisms with undercon-
straint eliminators. Precis Eng (2016), http://dx.doi.org/10.1016/j.precisioneng.2016.06.010

ARTICLE IN PRESSG Model
PRE-6419; No. of Pages 10

Precision Engineering xxx (2016) xxx–xxx

Contents lists available at ScienceDirect

Precision  Engineering

journa l homepage: www.e lsev ier .com/ locate /prec is ion

Large  displacement  behavior  of  double  parallelogram  flexure
mechanisms  with  underconstraint  eliminators

Robert  M.  Panas
Lawrence Livermore National Laboratory, L-229, 7000 East Avenue, Livermore, CA 94550, United States

a  r  t  i  c  l  e  i  n  f  o

Article history:
Received 19 August 2015
Received in revised form 3 March 2016
Accepted 21 June 2016
Available online xxx

Keywords:
Underconstraint elimination
Four-bar flexure
Folded flexure
Double parallelogram flexure
Nested linkage
Nonlinear beam analysis
Elastokinematic effect
Large displacement axial stiffness
Large stroke
Flexure mechanism

a  b  s  t  r  a  c  t

This  paper  presents  a new  analytical  method  for predicting  the  large  displacement  behavior  of  flexural
double  parallelogram  (DP)  bearings  with  underconstraint  eliminator  (UE)  linkages.  This  closed-form  per-
turbative Euler  analysis  method  is able  to –  for the  first time  –  directly  incorporate  the elastomechanics
of  a discrete  UE  linkage,  which  is  a hybrid  flexure  element  that  is linked  to ground  as  well  as  both  stages
on  the  bearing.  The  models  are  used  to  understand  a nested  linkage  UE  design,  however  the  method  is
extensible  to  other  UE linkages.  Design  rules  and  figures-of-merit  are  extracted  from  the  analysis  models,
which  provide  powerful  tools  for accelerating  the  design  process.  The  models,  rules  and  figures-of-merit
enable  the rapid  design  of  a UE  for  a desired  large  displacement  behavior,  as  well as  providing  a  means
for  determining  the  limits  of  UE and DP  structures.  This  will aid in  the  adoption  of  UE  linkages  into  DP
bearings  for precision  mechanisms.  Models  are  generated  for  a  nested  linkage  UE  design,  and  the  per-
formance  of this  DP  with  UE  structure  is compared  to a DP-only  bearing.  The  perturbative  Euler  analysis
is  shown  to match  existing  theories  for DP-only  bearings  with  distributed  compliance  within  ≈2%,  and
Finite  Element  Analysis  for  the  DP  with  UE  bearings  within  an  average  10%.

© 2016 Elsevier  Inc.  All  rights  reserved.

1. Introduction

The intent of this work is to model the effect of a nested
linkage underconstraint eliminator [1] on the large displacement
y-axis stiffness of a flexural double parallelogram linear bearing.
A new method is presented for the closed-form analysis of the
large displacement axial stiffness which can easily incorporate the
complex elastomechanics of a UE linkage, unlike existing large dis-
placement models [2–18]. Design rules and new figures-of-merit
are defined to further simplify the design process. These tools
are demonstrated on a nested-linkage UE design as presented in
[1], but they are generalizable to other UE designs. These tools
enable the rapid, direct design of the UE for the desired large
displacement behavior, in addition to mapping the performance
limitations intrinsic to the DP bearing as well as those of the
UE. This work will accelerate the adoption of UE linkages into
DP bearings, as designers can now quickly analyze the tradeoffs
associated with their use, even for large displacement applica-
tions. This offers the potential for improving bearing performance
via reduced error motion, improved dynamics and greater bear-
ing stiffness for a range of applications including their use as
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MEMS  [5,6,19–27], single-/multi-axis precision positioning stages
[19,28–32], and macroscale bearings [8,33–35].

1.1. Double parallelogram flexure bearing

Double parallelogram flexure bearings, as shown in Fig. 1, are
commonly used in precision devices [8,13,18,34,36,37] for several
reasons. The flexure component of the bearing can provide motion
with very fine resolution, no stiction, and high repeatability [8,34]
among other features. The double parallelogram structure provides
increased range and reduced kinematic errors for its main transla-
tion Degree-of-Freedom (DOF) over that of a single parallelogram
flexure bearing [2,18]. The kinematic errors of the single parallelo-
gram are shown as elliptical arcs in Fig. 1b. At large displacements,
these arcs begin to show a y-axis component. The second stage of
the bearing shows these same errors in reverse, so the net effect
is to cancel out the kinematic error at the final stage [2,18] given
that the final and intermediate stages are allowed to move in a 2:1
ratio. This is shown in Fig. 1b with solid arrows.

The intermediate stage possesses the same translational DOF as
the final stage [1,2,8,18,28,37,38]. The underconstraint is observ-
able in two  forms [1,18]. The freedom of the intermediate
stage to vibrate appears as a relatively low frequency collocated
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Nomenclature

Motion
�ld Angle of flexures at large displacement (rad)
xb Transverse displacement of individual flexure blade

(m)
xf X-axis displacement of final stage (m)
ıxi X-axis perturbation displacement of intermediate

stage (m)
ıxf X-axis perturbation displacement of final stage (m)
ıyi Y-axis perturbation displacement of intermediate

stage (m)
ıyf Y-axis perturbation displacement of final stage (m)
ımt Transverse displacement of the type m flexure in the

flexure reference frame (m)
ıma Axial displacement of the type m flexure in the flex-

ure reference frame (m)
X X-axis displacement of final stage, nondimensional-

ized via hm

Large Displacement Effect Scale Figure-of-Merit
�b LDES of single beam transverse motion
�DP LDES of DP bearing with no UE main DOF
�11 LDES of type 11 flexures in main DOF
�12 LDES of type 12 flexures in main DOF
�2 LDES of type 2 flexures in main DOF
�m LDES of type m flexures in main DOF
�yf LDES of final stage y-axis elastokinematics
�d2 LDES of 1st order term, DP + UE net effect
�d4 LDES of 2nd order term, DP + UE net effect
�nUE LDES of final stage y-axis net effect
�nDP LDES of final stage y-axis net effect

Geometry
E Young’s modulus for all flexure types (Pa)
A Axial-normal cross-sectional area for all flexure

types (m2)
I Axial-normal second moment of area for all flexure

types (m4)
L Length for all flexure types (m)
h Bending direction thickness for all flexures (m)
� PRBM flexure length fraction
�2 Angle of type 2 flexures off the y-axis (rad)
r1 Lever arm for type 1 flexures (m)
r2 Lever arm for type 2 flexures (m)
d Lever arm for UE rotation (m)
d3 Separation between serial type m flexures (m)
a0 Compliance distribution ratio

Forces
Fmt Transverse reaction force of type m flexure (N)
Fma Axial reaction force of type m flexure (N)
Fmx X-axis reaction force of type m flexure (N)
Fmy Y-axis reaction force of type m flexure (N)
Fx X-axis reaction force to hold final stage (N)
Fy Y-axis applied load on final stage (N)

Stiffness
kma Axial stiffness for type m flexures (N/m)
kmt Transverse (in-plane) stiffness for type m flexures

(N/m)
kpa Axial stiffness for type p flexures (N/m)
kpb Rigid body relaxation stiffness for type p flexures

(N/m)

Stiffness
kj� Clamped-free z-axis moment-to-rotation stiffness

for type j flexures (N-m /rad)
kjt Clamped-guided in-plane transverse force to dis-

placement stiffness for type j flexures (N/m)
kjt� Clamped-free z-axis moment to in-plane transverse

displacement stiffness (N-m/m)
kiue UE stiffness for intermediate stage undercon-

strained DOF motion (N/m)
kfue UE stiffness for final stage main translational DOF

motion (N/m)
kba Axial stiffness of a single beam (N/m)
kbae Euler axial stiffness of a single beam (N/m)
kDP Axial (y-axis) stiffness of a DP bearing with no UE

(N/m)
kyi Y-axis stiffness for intermediate stage deformation

(N/m)
kyf Y-axis stiffness for final stage (N/m)
rk Underconstrained DOF Stiffness ratio

Subscripts
m Index for type m flexures
1 Index for type 1 flexures
11 Index for type 11 flexures
12 Index for type 12 flexures
2 Index for type 2 flexures
p Index for type {11, 12, 2} flexures
j Index for type {1, 2} flexures

resonance which can negatively affect the dynamics and control of
the bearing [1,18]. Axial loading (y-axis) on the final stage at large
displacements drives the intermediate stage back along its arcuate
path towards equilibrium, while the flexures holding the final stage
are further deflected, as shown in Fig. 1b via the dotted arrows.
This elastokinematic effect allows the final stage to translate axi-
ally, further than allowed by pure axial compression [1,2,18]. The
bearing performance with regards to the y-axis axial stiffness is
thus compromised by the underconstraint. The flexural DP is often
used as a bearing for microscale positioning stages driven by capac-
itive drives. It must resist pull-in effects via the DP axial stiffness
(y-axis), over a range of displacements, so this large displacement
axial stiffness reduction is of direct concern to device performance.
This has been a common focus for bearing designers [3–6,14].

Fig. 1. a) Double parallelogram flexure bearing, with b) effective linkage model of
the bearing undergoing displacement along its main translational DOF. The solid
arrows show the main translation DOF motion, while the dotted arrows show the
y-axis DOF of the final stage at large displacements enabled by the underconstrained
DOF of the intermediate stage. Image from [1].
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