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a  b  s  t  r  a  c  t

We  define  isotropic  springs  to  be central  springs  having  the  same  restoring  force  in all  directions.  In pre-
vious  work,  we  showed  that isotropic  springs  can  be advantageously  applied  to  horological  time  bases
since  they  can  be used  to eliminate  the  escapement  mechanism  [7]. This  paper  presents  our  designs  based
on planar  serial  2-DOF  linear  isotropic  springs.  We  propose  two  architectures,  both  based  on parallel  leaf
springs,  then  evaluate  their  isotropy  defect  using  firstly  an  analytic  model,  secondly  finite element  anal-
ysis  and  thirdly  experimental  data  measured  from  physical  prototypes.  Using  these  results,  we  analyze
the  isotropy  defect  in terms  of  displacement,  radial  distance,  angular  separation,  stiffness  and  linearity.
Based  on  this  analysis,  we  propose  improved  architectures  stacking  in  parallel  or  in series  duplicate  copies
of the  original  mechanisms  rotated  at specific  angles  to cancel  isotropy  defect.  We  show  that  using the
mechanisms  in  pairs reduces  isotropy  defect  by  one  to two  orders  of  magnitude.

©  2015  The  Authors.  Published  by  Elsevier  Inc.  This  is an  open  access  article  under  the  CC  BY-NC-ND
license  (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

The biggest improvement in timekeeper accuracy was  due to
the introduction of the oscillator as a time base, first the pendulum
by Christiaan Huygens in 1656 [10], then the balance wheel–spiral
spring by Huygens and Hooke in about 1675, and the tuning fork by
Niaudet and Breguet in 1866 [14]. Since that time, these have been
the only mechanical oscillators used in mechanical clocks and in all
watches.

In [7], we presented new time bases for mechanical timekeepers
which, in their simplest form, were based on a harmonic oscillator
first described in 1687 by Isaac Newton in Principia Mathematica
[13, Book I, Proposition X]. This oscillator is the isotropic harmonic
oscillator, where a mass m at position r is subject to a central linear
(Hooke) force.

Since the resulting trajectories have unidirectional rotation, this
oscillator has the advantage of solving the problem of inefficiency
of the escapement by eliminating it or, alternatively, simplifying it
[7]. Isochronism is the key feature of a good time base, and in this
case, the spring of the spring–mass system must be as isotropic as
possible, meaning that in every direction, the spring stiffness and
mass must remain the same. In addition, it should be planar in order
to be easy to manufacture at any scale (note that Newton’s model
implies planar motion, by preservation of angular momentum).
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In this paper, we  mechanize Newton’s model by designing new
planar isotropic springs. Our designs are based on the principle
of compliant XY-stages [1,3,11,12] which are mechanism with two
degrees of freedom (2-DOF) both of which are translations. As these
mechanisms are composed of compliant joints [9] they exhibit
planar restoring forces so can be considered as planar springs. In
the literature, many planar flexible XY-stages have been proposed
and if some may  be implicitly isotropic, none has been explic-
itly declared to be isotropic. This could be explained by the fact
that, in general, XY-stages are controlled in closed-loops [17] and
isotropy stiffness defects are therefore not necessarily a matter
of concern. Moreover, we use a serial architecture instead of the
parallel one generally seen in XY-stages used actuator integration
applications.

Simon Henein [6, p. 156, 158] proposed two  non-planar archi-
tecture XY-stages exhibiting planar isotropy. The first is composed
of two serial compliant four-bar mechanisms, also called parallel
arm linkage, which produce, for small displacements, translations
in X and Y (see also [5]). The second is composed of four parallel
arms linked by eight spherical joints and a bellow connecting the
mobile platform to the ground.

In this paper the designs of two  central springs based on parallel
leaf springs are presented after a brief presentation of the context.
For each of both designs, their analytical model is presented and
compared to the performance based on finite element analysis and
on experimental data of physically constructed prototypes.

Some images of these designs have appeared in [7] and some
appear in recent patent applications.
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Fig. 1. Elliptical orbit under central Hooke Law.

2. Context

In order to understand the elliptical trajectories of planets pre-
dicted by Kepler’s Laws, Isaac Newton considered the possible
central laws producing elliptical orbits and he showed that apart
from the inverse square law, a linear Hooke’s law would also pro-
duce elliptical orbits,1 see Fig. 1.

Newton’s result is very easily shown. Consider a point mass
moving in two dimensions subject to a central force

F(r) = −Kr,

where r is the distance of the mass to the center. Applying Newton’s
second law F = ma, where m is the mass of the particle and a its
acceleration, gives the general solution

r = (A1 sin(ω0t + ϕ1), A2 sin(ω0t + ϕ2)), (1)

for initial conditions A1, A2, ϕ1, ϕ2 and frequency

ω0 =
√

K

m
.

This shows that orbits are elliptical, but also that the period only
depends on the mass m and the stiffness K of the central force, and
not on the energy of the system, what is generally called isochro-
nism. This last property is the key feature of horological time bases
in which the regulation must be kept independent of the energy
source. It follows that this oscillator is a good candidate to be a time
base for a timekeeper, an observation first made in our previous
article [7].

In order to exploit this oscillator as a mechanical time base, New-
ton’s model must be followed as closely as possible. In particular,
the mechanism’s central linear restoring force must be as isotropic
as possible. Expressed quantitatively, the isotropy defect must be
minimized.

3. Definition of isotropy defect

The first step in analyzing the isotropy defect of a central spring
is to give a precise definition of what is meant by isotropy defect.
In particular, since isotropy defect only applies to central springs,
the term “central” will be suppressed without ambiguity. The basic
context of our isotropy defect computations is given in Fig. 2.

3.1. Baseline behavior

In order to evaluate isotropy defect, a baseline is required for
comparison. We  assume that our spring has ideal stiffness K. A force
F� of magnitude F and direction � is applied, where � will vary
between 0◦ and 360◦ and the magnitude F will be constant (i.e.

1 The occurrence of ellipses in both laws is now understood to be due to a relatively
simple mathematically equivalence [4] and it is also well-known that these two
cases are the only central force laws leading to closed orbits [2,15].

Fig. 2. Basic model of isotropy defect.

independent of �). Under this force, the point O on the spring moves
to the ideal position P� , and by Hooke’s Law, �OP� has magnitude F/K
and direction �, see Fig. 2. Therefore, as � varies between 0◦ and
360◦, the ideal point P� describes a perfect circle of radius F/K, and
the restoring force is linear and isotropic.

3.2. Definitions

The previous example illustrates ideal behavior with zero
isotropy defect. Divergence from this example will be used to mea-
sure the isotropy defect. Thus, when isotropy defect does occur, the
force F will move the point O to a point Q� generally distinct from
P� , see Fig. 2. The isotropy defect vector in the direction � is defined
to be �P�Q� .

In order to evaluate and compare the isotropy defect of our
mechanisms, it is more convenient to have scalar measures of
isotropy defect. We  therefore define the simpler radial isotropy
defect given by

�� = ‖ �OQ �‖ − ‖ �OP�‖.

Note that this measure of isotropy defect considers the discrepancy
between the magnitudes of the actual displacement and the ideal
displacement for angle � which is different from the magnitude
‖ �P�Q�‖ of the isotropy defect vector, see Fig. 2.

The angular isotropy defect ϕ� is defined as the angle between
�OP� and �OQ � , as measured in the counterclockwise direction, see

Fig. 2.
In order to define stiffness isotropy defect, we first introduce the

notion of stiffness in a given direction � by

k� = F

‖ �OP�‖ + ��

= F

‖ �OQ �‖
.

The stiffness isotropy defect in the � direction is then

�k� = K − k�,

where K is the ideal stiffness defined as the maximum of k� for all
angles. Note that �k� is non-negative, by definition of K.

The relative stiffness isotropy defect in the � direction is defined
as

�� = �k�

k�
= ��

‖ �OP�‖
,
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