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a  b  s  t  r  a  c  t

The  stage  error  of  coordinate  measuring  machines  (CMM)  can  significantly  influence  the  measurement
results,  and  it places  ultra-high  requirement  on  the  measurement  and  calibration  tools.  A calibration
technique  based  on self-calibration  algorithm  is presented  to calibrate  the two-dimensional  stage  error
of CMM,  and  it  can  be carried  out with  a  grid  plate  of the  accuracy  no higher  than  test  stage.  With  the
proposed  self-calibration  algorithm  based  on  least  squares  method,  the measurements  at various  position
combinations  of rotation  and  translation  are  carried  out  to separate  the  stage  error  from  measurement
results.  Both  the  accuracy  and feasibility  of the proposed  calibration  method  have  been  demonstrated  by
computer  simulation  and  experiments,  and  the  measurement  accuracy  RMS better  than  1  �m is  achieved.
The  proposed  calibration  method  has  a good  anti-noise  ability  and  provides  a  feasible  way  to  lower  the
accuracy  requirement  on  standard  parts.  It is  of  great  practicality  for high-accuracy  calibration  of  the
stage  error  of CMM  and manufacturing  machines  in  the  order  of submicron.

© 2015  Elsevier  Inc.  All  rights  reserved.

1. Introduction

With the development of ultra-precise machining technique,
coordinate measuring machines (CMM)  have become a power-
ful measurement tool in the field of high-accuracy measurement.
However, there is generally a deviation of measured stage posi-
tion from the ideal position in Cartesian coordinates of CMM,
which is mainly introduced by the errors including the sys-
tematic measurement error and random noise. The systematic
measurement error, that is stage error, could introduce signifi-
cant error in the measurement results [1,2]. Thus, it is necessary
to measure and compensate the stage error to realize the high-
accuracy measurement with CMM.  Due to the limitation of practical
problems such as technical and economic difficulties in the man-
ufacture of precise test artifacts, the traditional CMM  calibration
method with an absolute standard artifact (with higher accu-
racy than the stage to be calibrated) is limited in application
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[3–5], especially not feasible in the case of high-accuracy measure-
ment better than sub-microns. Though the high-accuracy method
based with laser interferometer [2,6,7] has been widely applied
in stage error calibration, it is high-cost and complex in the
system.

The self-calibration method, which realizes the calibration of
stage error with a grid plate of the accuracy no higher than
test stage, has been proposed to overcome the accuracy lim-
itation of standard parts and achieve the required accuracy.
It is generally realized by measuring the grid plate at differ-
ent positions on test stage, and the stage error map  could be
reconstructed by comparing different measurement positions, in
which the unknown marker positioning errors cancel. Various
self-calibration algorithms have been proposed to separate stage
error from the measured systematic error [8–12], and they are
mostly based on discrete Fourier Transform (FT) method. The
self-calibration algorithms have been applied in the motion accu-
racy testing of two-dimensional stages [13–23], such as electron
beam lithography. However, the existing algorithms are poor
in noise suppression (the noise amplification factor is generally
greater than 1) [9], and are difficult to be applied in practical
measurement.
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Fig. 1. Three ideal coordinate systems defined in self-calibration algorithm.

In this paper, a self-calibration algorithm based on least squares
method is presented to calibrate the two-dimensional stage error
of CMM.  A grid plate with relatively lower accuracy than test stage,
on which the markers are uniformly distributed in square array
with the same spacing both in horizontal and vertical directions,
is used as additional tool. The proposed method provides a feasi-
ble way to separate and calibrate the stage error of CMM,  as well
as those of ultra-precise stages, lens distortion and printing field
distortion, etc. Section 2 presents the principle of self-calibration
algorithm; Sections 3 and 4 show computer simulation and exper-
imental results to demonstrate the feasibility and accuracy of the
proposed calibration method, in which the effects of various factors
such as position number, position combinations and deviations of
rotation angle and translation distance are discussed in detail; and
Section 5 draws some concluding remarks.

2. Principle

The calibration of stage error is realized with self-calibration
algorithm, in which the measurement error is mainly introduced
by the grid plate error, stage error and random noise. Considering
the fact that the grid plate error and stage error are dominant in
magnitude, the main goal in the self-calibration is the separation
of grid plate error and stage error, by which the calibration of stage
error can be realized.

2.1. Principle of self-calibration algorithm

According to the characteristics of systematic error in CMM,  the
following assumptions about stage positioning error are made: (1)
high repeatability and (2) low frequency (which means the posi-
tioning error remain unchanged in a small range). Fig. 1 shows the
ideal coordinate systems established for error analysis, including
the stage coordinate system XAOAYA, grid plate coordinate sys-
tem XGOGYG and defined absolute coordinate system XOY, where
(VA, WA) and (VG, WG) represent the deviations of the origins on
stage and grid plate coordinate systems from that on defined abso-
lute system XOY, respectively, �A and �G are the corresponding tilt
angles. Thus, the systematic error of the markers on grid plate can
be written as[
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where
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and � = �A + �G, (Mx, My) and (Nx, Ny)

refer to the measured and nominal coordinate values of the mark-
ers on grid plate, respectively, (Ax, Ay) and (Gx, Gy) represent the
corresponding stage error and grid plate error.

In addition, five assumptions [13] are made in the definition of
three ideal coordinate systems, those are: (1) no translation com-
ponents in stage error; (2) no tilt components in stage error; (3) no
scaling components in stage error; (4) no translation components

Fig. 2. Various positions in 3-position self-calibration, (a) original position, (b) after
90◦ counterclockwise rotation and (c) after one-grid translation.

in grid plate error; (5) no tilt components in grid plate error, which
can be written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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where M represents magnification. According to the five assump-
tions mentioned above and the measurement result of each marker
on grid plate at the original measurement position, the measure-
ment error of the markers can be written as
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where (Q1x, Q1y) is the measurement error of the markers on grid
plate, [·]T represents a matrix transpose, I and E are the identity
matrix and the column vector with all the elements being 1, respec-
tively.

Assume that n2 denotes the number of the points on grid plate,
the corresponding numbers of unknowns and equations in Eq. (3)
are 4n2 + 3 and 2n2 + 7, respectively, and there are infinite solu-
tions in the case of equation number less than that of unknowns.
The numbers of unknowns and equations would be 4n2 + 9 and
6n2 − 2n + 7 when the measurements are carried out in three var-
ious positions (as shown in Fig. 2), and the single solution to
the equations can be determined with the least squares method.
With the increase of measurement position number, the solu-
tion accuracy with least squares method can be further promoted.
Considering the fact that the increase of measurement position
number could also reduce the efficiency in calibration, the num-
ber of measurement positions ranging from 3 to 8 is chosen for the
study of self-calibration algorithm in this paper.

2.2. Self-calibration algorithm with eight positions

In the case of 8-position self-calibration method, the measure-
ments at 8 various positions of grid plate are carried out to realize
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