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a  b  s  t  r  a  c  t

An  attempt  was  made  to  create  a  new  software  solution  for  evaluating  minimum  zone  (MZ)  based  flatness
error  using  data  acquired  from a coordinate  measuring  machine  (CMM).  The  authors  tried  to  exploit  one
very  useful  characteristic  of  a reference  plane  for evaluating  flatness  error.  Namely,  it is shown  that  only
one  point  located  within  a “cloud”  of  points  can  be used  to generate  reference  planes  for  the  purpose
of  evaluating  flatness  error.  The  method  is  named  One  Point  Plane  Bundle  Method  (OPPBM).  A solution
was  created  using  exclusively  basic  analytic  geometry  relations/transformations  and  a  general  purpose
worksheet  tool.  The  results  show  that  this  solution  can  be  used  to  determine  very  usable  MZ  flatness
error  values,  which  are  significantly  lower  than  values  provided  by  the least  square  method.  Execution
times  are  also  reasonable  and  acceptable.  The  method  has  been  validated  using  the  data  from  reference
literature  and  experimental  data measured  by  a CMM.

© 2015  Elsevier  Inc.  All  rights  reserved.

1. Introduction

For satisfying a number of functional requirements related to
mechanical assemblies, flatness tolerances are often applied in
workpiece specifications. Conformance with specifications is veri-
fied in accordance with appropriate standards [1]. Thanks to their
flexibility, coordinate measuring machines (CMM)  are the most
effective tool in measuring systems. They are highly effective in ver-
ifying all of the workpiece macro-deviations because they operate
through two independent phases [2]. The first phase involves phys-
ical extraction of a finite sample size using a particular probe. The
selected sample points should represent the surface as accurately
as possible. The second phase includes feature fitting for the pur-
pose of evaluating associative geometry. The measurement result
represents the difference between nominal and associative geome-
try. Thus, this phase has a key impact on the achieved measurement
error/uncertainty. Two methods for obtaining associative geome-
try are used: minimum zone (MZ) and least square (LS) method.
Although the LS method is statistically based, more often used
and the approach easy to carry out, the MZ  based evaluating form
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tolerance is recommended by ISO 1101 [3] (accurate version of ISO
1101 is from 2012, at the moment being revised).

Thus, the problem of evaluating the MZ  flatness error has
attracted attention of researchers for a long time. Murthy and Abdin
[4] were among the first in 1980 to describe methods based on
Monte Carlo simulation, normal least square fit, simplex search
and spiral search used to evaluate surfaces. In the study of Shun-
mugam [5] it has been noted that the least square based methods
for evaluating flatness errors do not always yield minimum value.
Dhanish and Shunmugam [6] proposed in their study linear Cheby-
shev approximation to solve the MZ  based approach for evaluating
various surface form errors. Huang et al. [7] proposed a MZ  based
algorithm for evaluating flatness errors called the control plane
rotation scheme. Kanada and Suzuki [8] briefly described and com-
pared five linear methods used for evaluating straightness errors.
In Ref. [9] the same authors described some nonlinear techniques
used for evaluating flatness errors. Cheraghi et al. [10] presented a
method for evaluating straightness and flatness errors based on lin-
ear programming/convex hull procedure. They also presented test
data and results. Several years later Samuel and Shunmugam [11]
also used convex hull procedures for the same purpose. Sharma
et al. [12] were among the first to introduce the use of genetic
algorithms for evaluating form tolerances. Zhu and Ding [13] also
contributed to the development of linear programming methods
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in reaching minimum zone solutions. Weber et al. [14] introduced
unified linear approximation technique for evaluating form errors.
In the years to follow, linear programming techniques (e.g. Portman
et al. [15]) and the use of genetic algorithms (e.g. Wen  et al. [16]
and Cui et al. [17]) for evaluating form errors were improved. Calvo
et al. [18] provided a brief retrospective of the proposed methods
for evaluating form errors and proposed a new vectorial method
based on MZ.

The methods described in these and similar references are more
or less complex, more or less time consuming, described with more
or less clarity and more or less easy to implement. However, their
complexity and/or the amount of information provided, in most
cases, narrow the group of potential users.

This paper is intended to present a very simple solution to
the problem of evaluating flatness errors based on MZ.  What is
more, nowadays, when the use of information technology is widely
available, it is indeed recommended that the use of standard soft-
ware tools should be sufficient for basic implementation of a
method. Last, but not the least, the time needed for execution
and acquiring the results is also one of the most important user
requirements.

Because the method is based on generating a bundle of planes
through one point, it has been named One Point Plane Bundle
Method (OPPBM).

2. Method used

The method is based on a very useful property of a reference
plane used for evaluating flatness error. Namely, coordinates of a
plane normal vector are the only three parameters that affect flat-
ness error value. Actual plane position is not relevant, because its
orthogonal translations do not affect flatness at all.  It means that in a
plane equation given by formulas (1) and (2) as [19]:

Ax + By + Cz + D = 0 (1)

or

z = −Ax + By + D

C
(2)

where A, B and C are coordinates of a plane normal vector and D is a
constant defining the position of a plane, parameter D is irrelevant
and does not affect evaluation of flatness error. It means that taking
any plane with a particular normal vector defined by parameters A,
B and C results in the same evaluation of flatness error (location of a
particular plane once determined by normal vector rotation and the
fact that point A belongs to the plane, defines its particular value
of parameter D which is then used later to calculate orthogonal
distances from the generated planes from a bundle and evaluate
flatness error – see formulas (12) and (13)).

The literature review did not show this information. Here is the
proof.

Suppose  ̨ is a reference plane (plane parallel to envelope
planes) for evaluating flatness (Fig. 1). CMM  reports n points mea-
sured from a surface being evaluated (point cloud on the left). They
have appropriate orthogonal projections on plane ˛′ (point cloud
on the right).

Fig. 2 represents a projection of CMM  points to plane ˛′, perpen-
dicular to plane  ̨ (as seen from the position designated in Fig. 1).
Lines a (which is an intersection of planes  ̨ and ˛′) and b (which
belongs to plane ˛′) are also perpendicular. An observing position
designated on the left side of Fig. 1 with an “eye-like” symbol fol-
lowed by an oriented dash-line enables observing actual values
being components of flatness error (see Fig. 2).

Fig. 1. Points from CMM  with a parallelogram, reference plane  ̨ and perpendicular
plane ˛′ .

Fig. 2. Projection to plane ˛′ .

Flatness error R is calculated using (3) (see also Fig. 2), assuming
that R1 and R2 are the points with the largest orthogonal distances
from plane ˛:

R = R1R′
1 + R2R′

2 (3)

If plane  ̨ is translated for any ı to a new position a′′ parallel with
the previous (assuming ı small enough to locate a′′ somewhere
within the point “cloud”), flatness error is then calculated as:

R′ = R1R′′
1 + R2R′′

2 = R1R′
1 + ı + R2R′

2 − ı = R (4)

As a consequence of this equality, changing a point containing
the reference plane and keeping the same normal vector (which is
the same as orthogonal translation of a plane) does not affect flat-
ness error value. In other words, it makes calculating flatness errors
according to a predefined plan of experiment using a particular
number of points completely unnecessary. Reference planes could
be generated through only one point, wherever selected within
the parallelogram defined by maximum and minimum coordi-
nates of points reported by a CMM.  It guarantees obtaining the
optimum flatness value for the given numbers of steps used for ref-
erence plane rotation which is defined by numbers of calculating
cycles.

Indirect proofs of this claim can be found in studies [16] and [18].
Namely, considering formulas used for calculating flatness error
(as two  perpendicular distances from two points on two  envelop
planes) makes it obvious that flatness error evaluation is influenced
by the plane normal vector parameters, but not by the constant in
the plane equation (which is determined by coordinates of a point
on the plane). This is completely tested and is found accurate as
explained later in this paper in Section 3.

The parallelogram determined by the lowest/highest, leftmost/
rightmost and closest/farthest coordinates of the CMM  reported
points (as seen from the origin) is presented in Fig. 1. The
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