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A B S T R A C T

The joint probability density function (PDF) of response of a system subjected to Gaussian white noise satisfies
the Fokker–Planck–Kolmogorov (FPK) equation, to which neither analytical nor numerical solution is readily
available for high-dimensional nonlinear stochastic systems. In the present paper, for the systems excited by
additive white noise, by invoking the concept of equivalent drift coefficient, a high-dimensional FPK equation
is reduced to a one- or two-dimensional partial differential equation. The equivalent drift coefficient in the new
lower-dimensional equation is proved to be the conditional mean function of the drift coefficient in the original
high-dimensional FPK equation. The path integral solution is then employed to solve the dimension-reduced
FPK-like equation. The response analyses for several systems excited by white noise are exemplified to illustrate
the proposed method. The idea proposed in the present paper can be extended to multiplicative white noise and
colored noise.

1. Introduction

The response analysis of nonlinear systems excited by stochastic
processes is of paramount importance in various areas, in particular in
the design of engineering structures subjected to earthquakes or strong
wind [1]. For instance, as early as in 1947 Housner suggested to regard
seismic ground acceleration process as white noise [2], which was later
improved by many researchers, e.g., Kanai [3], Tajimi [4], Hu and Zhou
[5], Clough and Penzien [6], leading to various colored noise models
described by different power spectral density functions. Nonetheless,
white noise excited nonlinear systems still play important roles in
stochastic dynamics in that, on the one hand, they are reasonable models
for many physical/chemical/biological problems [7], on the other hand,
they can be used as the basis for the analysis of non-white noise excited
systems, say through the augmentation of dimensions by introducing
additional filters [8], or by invoking the stochastic averaging method to
convert a colored noise excited system to a Markov system [9,10].

The Fokker–Planck–Kolmogorov (FPK) equation governs the transi-
tion and joint probability density function (PDF) of the state vector of
a system subjected to white noise excitation. In the past over 50 years,
great efforts have been devoted to the solution of FPK equation [11–13].
Important advances have been achieved in both analytical solutions and
numerical methods. To the former type belong the analytical solutions
for special systems [14,15], and the systematic approach based on
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the Hamiltonian formulation [10,16], etc. Most analytical approaches
aim at stationary solutions. The analytical solution for the transient
response, which is of great significance in, e.g., earthquake engineering,
however, is much more involved. The numerical methods, on the other
hand, can capture both transient and stationary responses. Among
others, the finite difference method [17], the finite element method
[18], the eigen-function expansion method [19], and the path integral
solution (PIS) method [20–23] were extensively studied.

Unfortunately, almost all these analytical and numerical approaches
encounter difficulties in high-dimensional nonlinear systems. Till now
very few investigations provide results for systems with dimension
greater than 10. The underlying difficulty stems essentially from the cou-
pling of nonlinearity and randomness in high-dimensional systems [24].
To reduce the dimension of FPK equation is an alternative approach. For
instance, in Er [25] the state vector was firstly split into two sets, one set
representing the quantity of interest, the other set to be eliminated by
integration. The statistical linearization method was inserted to obtain
the joint PDF of the system and then complete the elimination by
integration. The accuracy of the approach depends on the degree of
nonlinearity because the linearization method was inserted. Besides,
in higher-dimensional systems the high-dimensional integration also
hinders its applications. To tackle this problem, a probability density
evolution method (PDEM) was developed in the past decade [24,26,27],
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which reveals that the change of PDF is driven by the change of state
of the underlying physical system. In light of this PDEM, an alternative
approach was proposed for dimension reduction of FPK equation [28,
29], where the equivalent flux of probability was reconstructed via the
results of PDEM. Further, the concept of equivalent drift coefficient was
proposed, resulting in a FPK-like dimension-reduced equation [30].

Along this line, the dimension-reduced FPK equation will be in-
vestigated in the present paper. The equivalent drift coefficient of the
dimension-reduced equation will be reconstructed as a conditional mean
of the drift coefficient of the original high-dimensional FPK equation.
Numerical examples are illustrated, demonstrating the effectiveness of
the proposed method by comparing the numerical results with the
analytical or Monte Carlo simulation results. The paper is organized as
follows: in Section 2 the dimension-reduced FPK equation for additive
white noise excited systems is derived. The implementation details,
including the construction of equivalent drift coefficient and the basic
idea of the path integral solution method, are delineated in Section 3.
Several numerical examples are studied in Section 4, demonstrating
the effectiveness of the proposed method. The concluding remarks are
drawn in Section 5.

2. Dimension-reduced FPK equation for nonlinear systems sub-
jected to additive white noise excitation

2.1. The FPK equation

Without loss of generality, the equation of motion of a structure
excited by additive white noise reads

𝐌�̈� + 𝐂�̇� + 𝐟 (𝐗) = 𝐋𝝃 (𝑡) (1)

where �̈�, �̇�,𝐗 are the n by 1 acceleration, velocity and displacement
vectors, respectively; 𝐌,𝐂 are the n by n mass and damping matrices,
respectively; 𝐟 (⋅) =

(

𝑓1, 𝑓2,… , 𝑓𝑛
)T is the n by 1 restoring force vector,

𝐋 is the n by r loading position matrix, and 𝝃 (𝑡) =
(

𝜉1, 𝜉2,… , 𝜉𝑛
)T is the

r by 1 stochastic excitation vectors.
By introducing the state vector 𝐘 =

(

𝐗, �̇�
)T = (𝐗,𝐕)T, where

𝐕 =
(

𝑉1, 𝑉2,… , 𝑉𝑛
)T is adopted to denote the velocity vector to avoid

confusion, Eq. (1) is converted to a state equation

�̇�(𝑡) = 𝐀(𝐘, 𝑡) + 𝐁(𝐘, 𝑡)𝝃(𝑡) (2)

or explicitly,
{

�̇� = 𝐕
�̇� = −𝐌−1𝐂𝐕 −𝐌−1𝐟 (𝐗) +𝐌−1𝐋𝝃 (𝑡) (3)

where
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐀 (𝐘, 𝑡) = 𝐀(𝐗,𝐕, 𝑡) =
{

𝐕
−𝐌−1𝐂𝐕 −𝐌−1𝐟 (𝐗)

}

𝐁(𝐘, 𝑡) =
[

𝟎
𝐌−1𝐋

] (4)

In the present paper, only the case when 𝝃(𝑡) is a Gaussian white
noise vector is considered, i.e.,

𝐸 [𝝃(𝑡)] = 𝟎, 𝐸
[

𝝃(𝑡)𝝃T(𝑡′)
]

= 𝐃𝛿
(

𝑡 − 𝑡′
)

(5)

where 𝐸 [⋅] denotes the expectation operator, 𝛿 (⋅) is Dirac’s delta
function, 𝐃 = diag

(

𝐷1, 𝐷2,… , 𝐷𝑟
)

is an r by r diagonal matrix.
Generally, from the physical understanding, Eq. (2) should be under-

stood as an Stratonovich stochastic differential equation (SDE). Further,
the Stratonovich SDE could be converted to an equivalent Itô SDE [7],
which is mathematically more convenient. Fortunately, because the
system in Eq. (2) is additively excited, i.e., 𝐁(𝐘, 𝑡) does not depend on
the state vector 𝐘, as is clear from Eq. (4), the form of the Itô SDE is
essentially identical to Eq. (2), which can be further rewritten as

𝑑𝐘(𝑡) = 𝐀(𝐘, 𝑡)𝑑𝑡 + 𝐁𝑑𝐖(𝑡), 𝐘(𝑡0) = 𝐘0 (6)

where 𝐖 (𝑡) is the r -dimensional Wiener process, which is formally
defined by 𝑑𝐖 (𝑡) = 𝝃 (𝑡) 𝑑𝑡, and [7]

𝐸 [𝑑𝐖(𝑡)] = 𝟎, 𝐸
[

𝑑𝐖(𝑡)𝑑𝐖T(𝑡)
]

= 𝐃𝑑𝑡 (7)

In Eq. (6) 𝐘0 =
(

𝐗0,𝐕0
)

is the initial value vector, i.e., the initial
displacement and initial velocity vector, respectively.

Denote the joint PDF of the state vector by 𝑝𝐘 (𝐲, 𝑡) or 𝑝𝐗𝐕 (𝐱, 𝐯, 𝑡),
where 𝐲 =

(

𝑦1, 𝑦2,… , 𝑦2𝑛
)T, 𝐱 =

(

𝑥1, 𝑥2,… , 𝑥𝑛
)T and 𝐯 =

(

𝑣1, 𝑣2,… , 𝑣𝑛
)T

denote the real value in the support set. It is well known that the joint
PDF of state of the system (6) is governed by the following FPK equation

𝜕𝑝𝐘(𝐲, 𝑡)
𝜕𝑡

= −
2𝑛
∑

𝑗=1

𝜕
[

𝐴𝑗 (𝐲, 𝑡)𝑝𝐘(𝐲, 𝑡)
]

𝜕𝑦𝑗
+ 1

2

2𝑛
∑

𝑖=1

2𝑛
∑

𝑗=1
𝜎𝑖𝑗
𝜕2𝑝𝐘(𝐲, 𝑡)
𝜕𝑦𝑖𝜕𝑦𝑗

(8)

where the drift coefficient 𝐴𝑗 (𝐲, 𝑡) is the 𝑗th component of 𝐀(𝐲, 𝑡) in
Eq. (4), the diffusion coefficient 𝜎𝑖𝑗 is the 𝑖𝑗th component of the diffusion
matrix specified by

𝝈 = 𝐁𝐃𝐁T =

[

𝟎 𝟎
𝟎 𝐌−1𝐋𝐃𝐋T(𝐌−1)T

]

(9)

Note here that because 𝐁 does not depend on the state vector 𝐲, the
diffusion matrix 𝝈 does not depend on the state vector, either.

Generally, the boundary condition of Eq. (8) takes

𝑝(𝐲, 𝑡)||
|𝑦𝑗→±∞

= 0

𝑦𝑗𝑝(𝐲, 𝑡)
|

|

|𝑦𝑗→±∞
= 0

⎫

⎪

⎬

⎪

⎭

, 𝑗 = 1, 2,… , 2𝑛 (10)

From Eq. (9) it is observed that the component 𝜎𝑖𝑗 ≠ 0 holds only for
𝑖 = 𝑛 + 1,… , 2𝑛; 𝑗 = 𝑛 + 1,… , 2𝑛, then Eq. (8) can be rewritten as

𝜕𝑝𝐗𝐕(𝐱, 𝐯, 𝑡)
𝜕𝑡

= −
𝑛
∑

𝑗=1

𝜕
[

𝐴𝑗 (𝐱, 𝐯, 𝑡)𝑝𝐗𝐕(𝐱, 𝐯, 𝑡)
]

𝜕𝑥𝑗

−
𝑛
∑

𝑗=1

𝜕
[

𝐴𝑗+𝑛(𝐱, 𝐯, 𝑡)𝑝𝐗𝐕(𝐱, 𝐯, 𝑡)
]

𝜕𝑣𝑗

+1
2

𝑛
∑

𝑖=1

𝑛
∑

𝑗=1
𝜎𝑖+𝑛,𝑗+𝑛

𝜕2𝑝𝐗𝐕(𝐱, 𝐯, 𝑡)
𝜕𝑣𝑖𝜕𝑣𝑗

(11)

As discussed, great efforts have been devoted to the solution of FPK
equation, which is still an challenging problem for generic nonlinear
systems [12,22]. Some analytical solutions and numerical methods have
been extensively studied, providing deep insights into the problems in
various areas [31]. However, for the real-world problems with large
degrees of freedom and strong nonlinearity, feasible method for the
solution of FPK equation is still unavailable.

2.2. Dimension reduction of the FPK equation

As mentioned, the dimension reduction method for the FPK equation
is an alternative for high-dimensional systems. Er [25] conducted
interesting researches by inserting the equivalent linearization method.
Further, in Chen and Yuan [28,29] an equivalent flux based approach
was proposed, and was further extended in Chen and Lin [30].

In practice, usually only the PDF of a few quantities of interest,
rather than joint PDF of all the state variables, is necessary. Suppose
𝑌𝓁(𝑡), 1 ≤ 𝓁 ≤ 2𝑛, is the quantity of interest. Integrating on both sides of
Eq. (8) with respect to the state variables excluding 𝑦𝓁 and considering
the boundary condition in Eq. (10) yield the following equation
𝜕𝑝𝑌𝓁 (𝑦𝓁 , 𝑡)

𝜕𝑡
= −

𝜕 ∫ ∞
−∞ ⋯ ∫ ∞

−∞ 𝐴𝓁(𝐲, 𝑡)𝑝𝐘(𝐲, 𝑡)𝑑𝑦1 ⋯ 𝑑𝑦𝓁−1𝑑𝑦𝓁+1 ⋯ 𝑑𝑦2𝑛
𝜕𝑦𝓁

+1
2
𝜎𝓁𝓁(𝑡)

𝜕2𝑝𝑌𝓁 (𝑦𝓁 , 𝑡)

𝜕𝑦2𝓁

(12)

where 𝑝𝑌𝓁 (𝑦𝓁 , 𝑡) = ∫ ∞
−∞ ⋯ ∫ ∞

−∞ 𝑝𝐘(𝐲, 𝑡)𝑑𝑦1 ⋯ 𝑑𝑦𝓁−1𝑑𝑦𝓁+1 ⋯ 𝑑𝑦2𝑛 is the
marginal PDF of 𝑌𝓁 (𝑡).

It is noticed that the high-dimensional integral in Eq. (12) yields
a function of 𝑦𝓁 , which is nothing but the flux of probability in the
direction of 𝑦𝓁 [28], i.e.,

𝐽
(

𝑦𝓁 , 𝑡
)

= ∫

∞

−∞
⋯∫

∞

−∞
𝐴𝓁(𝐲, 𝑡)𝑝𝐘(𝐲, 𝑡)𝑑𝑦1 ⋯ 𝑑𝑦𝓁−1𝑑𝑦𝓁+1 ⋯ 𝑑𝑦2𝑛 (13)
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