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A B S T R A C T

Stochastic systems to stationary random excitations may fail long before stationarity is achieved. Transient state
has to be taken into account. It has been a challenge to obtain exact transient response properties. A novel
approximate technique for determining non-stationary probability density function (PDF) of randomly excited
nonlinear oscillators is developed. Specifically, it expresses the PDF approximation in terms of polynomial
functions with time-dependent coefficients. Based on the results from statistical linearization, residual error
of the FPK equation associated with proposed approximation solution can be treated by weighted residual
method. As a result, nonlinear ordinary differential equations are produced. Numerical method is adopted to
solve these equations and approximate PDF solutions are then obtained. In order to verify the efficiency of the
proposed procedure, four examples of stochastic vibrating systems with additional excitations or/and parametric
excitations are considered. It is shown that the results obtained by the proposed procedure agree well with those
from Monte Carlo simulation.

1. Introduction

Structural systems under random excitations have been investigated
for many years. Most work focuses on the stationary excitations or
stationary structural responses [1–7], relatively less is related to tran-
sient or non-stationary excitations or responses. In this regard, research
effort has been in recent years on evolutionary statistics estimation.
Note that if the excitation is stationary with arbitrary initial condition
(non-stationary start), there will be a transient stage before attaining
stationary state. Response in such stage is of importance in estimating
structure reliability since failure may occur. One typical example is a
structure in an earthquake, in which case structural response during the
first several seconds plays a dominant role.

As is well known, when stochastic system is subjected to white
noise excitations, the response PDF is governed by Fokker–Planck–
Kolmogorov (FPK) equation. If there is a time derivative term in the
FPK equation, transient PDF solution can be obtained. However, it is
specially difficult to solve it. Exact solutions are available only for
linear systems and some special first order nonlinear systems [8,9].
Much research effort is still needed and approximate methods have
to be developed. Stochastic linearization has been proved to be one
of the most useful approximate techniques for non-linear systems
since it does not demand small parameter assumption and extensive
computational cost [10–14]. Lately it has been generalized to capture
non-Gaussian properties [15], and to determine joint time-frequency
nonstationary responses statistics [16]. Furthermore, it can be gen-
eralized to moment differential equation method or cumulant-neglect
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closure method, which enables it to predict higher order moments and
reliability estimates with different closure schemes [17–19]. Stochastic
averaging method, combined generalized Galerkin method, can be used
for nonstationary response envelope probability densities of nonlinear
oscillators [20–23]. The main feature of this method is that it enables
replacement of the original system by a lower-dimensional one through
a combination of time averaging and ensemble averaging. Since this
method relies on perturbation, it yields accurate results only for small
values of the nonlinearity parameter. Additionally, there is probability
density evolution method (PDEM), which is proposed according to
the principle of preservation of probability [24]. Due to the difficulty
in solving FPK equation, many numerical methods also have been
proposed. Monte Carlo simulation (MCS) is the most versatile technique
for numerical solutions of stochastic differential equations. However, it
associates with numerical convergence, stability, round-off error, and
especially requirements for large computational effort in simulating
small PDFs in the tail regions. Besides, there are other numerical
methods, such as cell mapping method [25], path integration method
[26–29], finite element method and finite difference method [30,31],
etc.

The exponential-polynomial closure (EPC) method, which is origi-
nally proposed for stationary PDF solutions of FPK equation, has been
proved to be a useful tool for analyzing nonlinear systems subjected to
stochastic excitations [32–35]. A main feature of this method is that it
transforms the linear ordinary differential FPK equation to a series of
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nonlinear algebraic equations, which can be solved easily by available
numerical methods. Furthermore, the accuracy of approximate solution
can be improved by changing the polynomial orders 𝑛. In particular,
if the interested nonlinear system belongs to stationary potential, the
solution obtained by the EPC method coincides with the exact one.
More importantly, the EPC method can be extended to multi-degree-
of-freedom (MDOF) systems, namely state–space-split EPC (3S-EPC)
method [36,37]. Then as a result the investigation on the EPC method
can be fundamental for analyzing MDOF systems. Up to now, the EPC
method has rarely been used to analyze transient responses of stochastic
dynamic systems.

In this paper, the EPC method is improved for approximate transient
responses of stochastic systems under Gaussian white noise excitations.
Specifically, it expresses the PDF approximation in terms of polynomial
functions with time-dependent coefficients. In order to verify the effi-
ciency of the proposed solution procedure, four examples of stochastic
vibrating systems with additional excitations or/and parametric excita-
tions are considered. It is shown that the results obtained by using the
proposed procedure agree well with those from MCS.

2. Mathematical formulation

2.1. Formulation of the FPK equation

In statistical mechanics and other areas, many problems can be
described by the following random systems:

𝑑
𝑑𝑡

𝑋𝑖 = 𝑓0𝑖(𝑿, 𝑡) + 𝑔𝑖𝑗 (𝑿)𝑊𝑗 (𝑡),

𝑖 = 1, 2,… , 𝑚, 𝑗 = 1, 2,… , 𝑝, (1)

where 𝑋𝑖 are components of the vector process 𝑿, functions 𝑓0𝑖(𝑿, 𝑡) and
𝑔𝑖𝑗 (𝑿, 𝑡) are functions determined in the specific case; 𝑊𝑗 are zero-mean
stationary Gaussian white noise excitations characterized as

𝐸[𝑊𝑖(𝑡1)𝑊𝑗 (𝑡2)] = 𝑆𝑖𝑗𝛿(𝑡1 − 𝑡2), (2)

in which 𝐸[⋅] means stochastic averaging, 𝑆𝑖𝑗 are constants representing
cross-spectral densities of white noises 𝑊𝑖 and 𝑊𝑗 , 𝛿(⋅) is Dirac’s delta
function. Moreover, if functions 𝑔𝑖𝑗 (𝑿, 𝑡) depend only on time 𝑡, then
stochastic oscillator in Eq. (1) involves with only additive excitations.

The response process 𝑿 governed by Eq. (1) is a Markov process,
which is completely characterized by the transition PDF 𝑝(𝒙, 𝑡|𝒙𝟎, 𝑡0),
defined as the PDF of 𝒙 at time 𝑡, subjected to the initial condition 𝒙 = 𝒙𝟎
at 𝑡 = 𝑡0. The transition PDF is ruled by the FPK equation

𝜕𝑝
𝜕𝑡

+
𝜕𝑝
𝜕𝑥𝑖

(𝑓𝑖𝑝) −
1
2

𝜕2

𝜕𝑥𝑖𝜕𝑥𝑗
[𝐺𝑖𝑗 (𝒙, 𝑡)𝑝] = 0, (3)

where

𝑓𝑖(𝑿, 𝑡) = 𝑓0𝑖(𝑿, 𝑡) + 1
2
𝑆𝑙𝑠

𝜕𝑔𝑖𝑙(𝑿, 𝑡)
𝜕𝑋𝑟

𝑔𝑟𝑠(𝑿, 𝑡), (4)

where the second terms represent so called Wong–Zakai or Stratonovich
correction terms. They are vanished in the case of purely external
excitations. And 𝐺(𝒙, 𝑡) is

𝐺(𝒙, 𝑡) = 𝑆𝑙𝑠𝑔𝑖𝑙(𝒙, 𝑡)𝑔𝑗𝑠(𝒙, 𝑡). (5)

The appropriate initial condition associated with the FPK equation
is

𝑝(𝒙, 𝑡|𝒙𝟎, 𝑡) = 𝛿(𝒙 − 𝒙𝟎). (6)

And it is assumed that 𝑝(𝒙, 𝑡|𝒙𝟎, 𝑡) fulfills the following constraints

𝑝(𝒙, 𝑡|𝒙𝟎, 𝑡) ≥ 0

lim
𝑥𝑖→±∞

𝑝(𝒙, 𝑡|𝒙𝟎, 𝑡) = 0, 𝑖 = 1, 2,…, 𝑚

∫𝑅𝑚
𝑝(𝒙, 𝑡|𝒙𝟎, 𝑡)𝑑𝒙 = 1 (7)

On the other hand, following It𝑜̂’s differential rule, moment equa-
tions 𝑀𝑘 = 𝑥𝑘11 𝑥𝑘22 ...𝑥𝑘𝑛𝑛 can be obtained

𝑑
𝑑𝑡

𝐸[𝑀𝑘] = 𝐸[𝑓𝑖(𝒙)
𝜕𝑀𝑘
𝜕𝑥𝑖

] + 1
2
𝑆𝑙𝑠𝐸[𝑔𝑖𝑙(𝒙, 𝑡)𝑔𝑗𝑠(𝒙, 𝑡)

𝜕2𝑀𝑘
𝜕𝑥𝑖𝜕𝑥𝑗

],

𝑘 = 𝑘1 + 𝑘2 +⋯ + 𝑘𝑛. (8)

It follows that response moments of nonlinear systems are governed
by an infinite hierarchy of linear differential equations, whose exact
solution is impossible. Approximate procedures, commonly called clo-
sure schemes, are needed in order to reduce the infinity hierarchy to a
finite one. If the closure level is set as 𝑘 = 4, such as cumulant-neglect
closure method with truncation level 𝑘 = 4, deviation of moments from
Gaussianity can be explicitly described. When the closure scheme 𝑘 = 2,
Gaussian moments of different orders at any time instant can be obtained
with variance matrix ∑ and zero means 𝝁. For clarity’s sake, Isserlis’s
theorem for zero-mean multivariate normal random vector at different
time instant is adopted

𝐸[𝑥1𝑥2...𝑥2𝑛; 𝑡] =
∑

𝐸[𝑥𝑖𝑥𝑗 ; 𝑡], 𝑖, 𝑗 = 1, 2,… , 2𝑛.

𝐸[𝑥1𝑥2...𝑥2𝑛−1; 𝑡] = 0, (9)

which are needed in the following solution procedure.

2.2. The developed EPC solution procedure

Since exact solution to Eq. (3) is usually not obtainable, approximate
methods have to be adopted. Herein exponential-polynomial closure
(EPC) method is used. In order to describe the time evolution of
response PDF, time variable 𝑡 has to be introduced into the previous
EPC stationary approximation. Then transient solution is approximated
as

𝑝̃(𝒙, 𝑡) = 𝐶 exp[𝑄𝑛(𝒂,𝒙, 𝑡)], (10)

where 𝐶 is a normalization constant, 𝑄𝑛(𝒂,𝒙, 𝑡) are n-degree polynomial
functions. Hereto, positivity and normalization constraints in Eq. (7)
for PDF solutions are automatically satisfied. In order to guarantee the
second constraint in Eq. (7), polynomial order 𝑛 has to be even to ensure
that coefficients of the highest polynomial order term are negative.
Polynomial functions 𝑄𝑛(𝒂,𝒙, 𝑡) are expressed as

𝑄𝑛(𝒂,𝒙, 𝑡) =
𝑁𝑝
∑

𝑘=1
𝑎𝑘(𝑡)𝑥

ℎ1[𝑘]
1 𝑥ℎ2[𝑘]2 ...𝑥ℎ𝑚[𝑘]𝑚

ℎ1[𝑘] = 𝑖 − 𝑗, ℎ2[𝑘] = 𝑗 − 𝑙, ℎ3[𝑘] = 𝑙 − 𝑠,… .ℎ𝑛[𝑘] = 𝑡;

𝑖 = 1, 2,… , 𝑛; 𝑗 = 0, 1,… , 𝑖; 𝑙 = 0, 1,… , 𝑗; 𝑠 = 0, 1, 2...𝑙; ... (11)

where 𝑁𝑝 is the total number of unknown parameters associated with
polynomial orders 𝑛, 𝑎𝑘(𝑡) are unknown time-dependent coefficients
needed to be specified. Obviously, higher approximation level can be
achieved by increasing the number of unknown parameters or the
degree of polynomial orders.

Substituting approximate solution Eq. (10) into the FPK equation Eq.
(3), residual error is inevitably produced

𝑅(𝒙,𝒂, 𝑡) = 𝜕𝑝̃
𝜕𝑡

+ 𝑓𝑗
𝜕𝑝̃
𝜕𝑥𝑗

+
𝜕𝑓𝑗
𝜕𝑥𝑗

𝑝̃

− 1
2
(
𝜕2𝐺𝑖𝑗

𝜕𝑥𝑖𝜕𝑥𝑗
𝑝̃ +

𝜕𝐺𝑖𝑗

𝜕𝑥𝑗
𝜕𝑝̃
𝜕𝑥𝑖

+
𝜕𝐺𝑖𝑗

𝜕𝑥𝑖
𝜕𝑝̃
𝜕𝑥𝑗

+ 𝐺𝑖𝑗
𝜕2𝑝̃

𝜕𝑥𝑖𝜕𝑥𝑗
). (12)
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