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a b s t r a c t

For uncertainty propagation of highly complex and/or nonlinear problems, one must resort to sample-based non-
intrusive approaches (Le Maître and Knio, 2010). In such cases, minimizing the number of function evaluations
required to evaluate the response surface is of paramount importance. Sparse grid approaches have proven
effective in reducing the number of sample evaluations. For example, the discrete projection collocation method
has the notable feature of exhibiting fast convergence rates when approximating smooth functions; however, it
lacks the ability to accurately and efficiently track response functions that exhibit fluctuations, abrupt changes or
discontinuities in very localized regions of the input domain. On the other hand, the piecewise linear collocation
interpolation approach can track these localized variations in the response surface efficiently, but it converges
slowly in the smooth regions. The proposed methodology, building on an existing work on adaptive hierarchical
sparse grid collocation algorithm (Ma and Zabaras, 2009), is able to track localized behavior while also avoiding
unnecessary function evaluations in smoother regions of the stochastic space by using a finite difference based
one-dimensional derivative evaluation technique in all the dimensions. This derivative evaluation technique
leads to faster convergence in the smoother regions than what is achieved in the existing collocation interpolation
approaches. Illustrative examples show that this method is well suited to high-dimensional stochastic problems,
and that stochastic elliptic problems with stochastic dimension as high as 100 can be dealt with effectively.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

Any model consists of input parameters which are inherently ran-
dom. The uncertainty in the inputs naturally leads to an uncertainty in
the output. Thus a single solution for the system using a fixed set of input
parameters is not sufficient to describe the system completely. Thus,
given the input uncertainties, it is of real interest to understand how
these uncertainties propagate through the deterministic system model
and result in uncertainties in the output solution. The quantification of
the output uncertainties is a much more comprehensive descriptor of
the system under study.

The traditional approach is to use random sampling techniques such
as Monte Carlo (MC) method. It involves generating sets of realiza-
tions of all the input parameters following their individual probability
distributions and then solving the deterministic code for each set of
realizations. The advantage of this method is that it is easy to implement,
it has a non-intrusive nature and the convergence rate is independent
of the number of stochastic dimensions. On the other hand, it suffers
from the drawback that it cannot easily approximate the solution space
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and usually only gives the output statistics, such as the mean and the
variance. The convergence rate for this method is also very slow and is
given by 𝜖 = 𝑂(𝑁−1∕2), where 𝑁 is the total number of points at which
the deterministic model is solved. Another major issue is the lack of con-
trol of the distribution of points in the domain which causes unwanted
clustering and scattering of points. For complicated deterministic mod-
els with high stochastic dimensions, the number of realizations required
for a certain high level of accuracy may be unrealistic. Approaches like
Latin Hypercube sampling (LHS) [1], Importance Sampling [2,3], Quasi
Monte Carlo Methods (using Halton sets, Sobol sets) [4] have been used
successfully to achieve better convergence rates than the conventional
Monte Carlo method. Artificial Neural Networks [5], In-situ Adaptive
Tabulation (ISAT) [6] and the Inverse Distance Weighted (IDW) [7]
technique are some of the approaches which can be used in tandem
with Monte Carlo sampling as postprocessing tools to approximate the
surface and hence build a surrogate surface.

Stochastic Galerkin Method [8] is a spectral approach which is a
very popular tool for uncertainty propagation. It is a non-sampling
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approach where the unknown solution is projected onto the stochastic
space spanned by a set of complete orthogonal polynomials after which
the Galerkin projection is applied to minimize the error due to the gPC
expansion and form a coupled set of deterministic equations. Wiener’s
original work on polynomial chaos [9] dealt with representation of
a Gaussian random process using global Hermite polynomials. Initial
work on the stochastic Galerkin method was done by Ghanem and
Spanos [10] using the concept of polynomial chaos by Wiener and has
been subsequently applied to various practical problems [11–15]. Gen-
eralized polynomial chaos (gPC) expansion was developed by Xiu and
Karniadakis [16] by including various other global polynomial-random
variable combinations, with a few applications found in [17–19]. This
method is known to have a very high convergence rate given the
response surface is sufficiently smooth in all the stochastic dimensions.
In the presence of discontinuities or highly localized variations in the
response surface, this method may fail to converge due to the well-
known Gibbs phenomenon. Remedies for this problem have been sought
using multielement gPC [20–22], piecewise polynomial basis [23], the
wavelet basis [24] and basis enrichment of polynomial chaos expan-
sions [25]. All these methods involve solution of a coupled system
of deterministic equations which may be non-trivial to solve when
the original deterministic model is very complex in itself. This is the
drawback of the intrusive nature of the method. A way to get around
this issue is the usage of non-intrusive collocation approaches.

The basic idea of non-intrusive collocation approaches is to strategi-
cally select points in the stochastic space. A surrogate response surface
is then constructed based on these points to allow for cheap extraction
of more sample responses. The goal is to achieve a specified level of
accuracy with an optimally small number of sample evaluations. This
method solves the deterministic problem at pre-selected collocation
points in the random domain, determined by using either interpola-
tion approaches or discrete projection approaches [26]. Some of the
earlier works on this method [27,28] used a tensor product of 1-
D interpolation functions. This approach suffers from the so-called
‘curse of dimensionality’ [29] as the number of points needed for full
model evaluations increases exponentially with increase in the number
of dimensions. Sparse grid [30] approaches alleviate this problem
to some extent as they significantly reduce the number of points in
high dimensions while maintaining almost the same level of accuracy.
Sparse grids are especially suitable for high dimensional problems
involving numerical integration and interpolation. The interpolation
approach approximates the stochastic space using multi-dimensional
interpolation with the existing data such that the surrogate surface
always passes through the pre-determined points [31–34]. More recent
works introduce adaptivity into the sparse grid collocation interpolation
approach, including dimension-adaptive sparse grid methods [35,36],
Multi-Element(domain-adaptive) sparse grid interpolation [37,38], and
adaptive sparse grid subset interpolation [39]. The adaptivity helps to
efficiently characterize any highly localized variations and discontinu-
ities in the response surface. The discrete gPC projection approach, also
known as the pseudospectral approach [26] is a discretized version
of the exact generalized Polynomial Chaos(gPC) projection method,
where a multi-dimensional numerical integration is performed with
the existing data to approximate the stochastic solution. The surrogate
surface here is not constrained to pass through the pre-determined
points. This approach is non-intrusive and has fast convergence rates for
smooth stochastic domains, but it is less conducive to tackling problems
with discontinuous response in the stochastic space. A global approach
based on Padé-Legendre approximation [40] has also been used to track
down strong non-linearities or discontinuities in the response surface. It
has also been shown [41,42] that selection of input points by considering
the probability structure of the input domain can lead to efficient
sampling.

The present work is based on the work done by Ma and Zabaras [39]
on adaptive sparse grid subset interpolation. Similar to that work, the
proposed approach uses linear basis functions for the adaptive sparse

grid interpolation to capture any localized variations in the response. In
addition, it aims to reduce the number of function evaluations by local 1-
dimensional cubic spline interpolations [43] in the smoother regions of
the response domain. The smoothness is measured by successive deriva-
tive estimation along a straight line of points using finite differences
of the output values in any of the input dimensions. Small changes
(within a tolerance) in the derivative estimates will indicate sufficient
smoothness for cubic spline interpolation along the straight line. This
helps to achieve the same accuracy as in [39], but decreases the number
of function evaluations, especially when the response function is widely
smooth. It is worth mentioning here that the derivative information
is extracted approximately from the output values without any exact
knowledge about the derivative of the output of interest.

The rest of the manuscript is organized as follows: In Section 2, the
general mathematical model for any physical system with uncertainties
is described. In Section 3, the conventional stochastic collocation (CSC)
method, the adaptive sparse grid collocation (ASGC) method and then
the proposed efficient adaptive sparse grid collocation (E-ASGC) method
are discussed in details. Section 4 deals with the various numerical
examples to compare the performance of the proposed method with
a few existing methods. Finally, the concluding remarks are given in
Section 5.

2. Problem definition

Following notations in [39], we represent the complete probability
space by the triplet (𝛺, ,) where 𝛺 corresponds to the sample space
of outcomes,  ⊂ 2𝛺 is the sigma algebra of measurable events in 𝛺, and
 ∶  → [0, 1] is the probability measure. Let 𝐼(𝜔) = {𝐼1, 𝐼2, 𝐼3,… , 𝐼𝑑}
be the multidimensional vector of random input parameters in a prob-
lem of interest, where 𝐼 ∶ 𝛺 →∈ R𝑑

𝑍(𝜔) = 𝑓 (𝐼(𝜔)), ∀ 𝜔 ∈ 𝛺 (1)

The goal is then to find out how the vector valued output 𝑍(𝜔) varies
with respect to each of the random vector components 𝐼𝑖(𝜔), 𝑖 ∈
[1, 2,… , 𝑑].

3. Stochastic collocation interpolation method

3.1. Conventional sparse grid interpolation

For a function 𝑓 ∶ [𝑎, 𝑏] → R, the one-dimensional interpolation
formula is given by:

𝑈𝑘(𝑓 (𝑥)) =
∑

𝑥𝑘∈𝑋𝑘

𝑎𝑥𝑘 (𝑥)𝑓 (𝑥
𝑘) =

𝑚𝑘
∑

𝑗=1
𝑎𝑥𝑘𝑗 (𝑥)𝑓 (𝑥

𝑘
𝑗 ), (2)

where 𝑥 ∈ [𝑎, 𝑏], 𝑋𝑘 = {𝑥𝑘|𝑥𝑘 ∈ [𝑎, 𝑏]}, 𝑎𝑥𝑘𝑗 (𝑥) ∈ [0, 1] ⊂ R1, 𝑎𝑥𝑘𝑗 (𝑥
𝑘
𝑖 ) = 𝛿𝑖𝑗 ,

{𝑖, 𝑗} ∈ [1, 2,… , 𝑚𝑘], and 𝑚𝑘 = number of points in the set 𝑋𝑘. For multi-
dimensional interpolation, the one-dimensional case can be upgraded to
obtain a tensor product formula:

(𝑈𝑘1 ⊗⋯⊗𝑈𝑘𝑑 )(𝑓 (𝐱))

=
𝑚1
∑

𝑗1=1
⋯

𝑚𝑑
∑

𝑗𝑑=1
(𝑎

𝑥𝑘1𝑗1
(𝐱)⊗⋯⊗ 𝑎

𝑥𝑘𝑑𝑗𝑑
(𝐱))𝑓 (𝑥𝑘1𝑗1 ,… , 𝑥𝑘𝑑𝑗𝑑 ) (3)

where 𝑑 is the total number of dimensions and 𝐱 = {𝑥1, 𝑥2,… , 𝑥𝑑} ∈ R𝑑

The major drawback of this tensor product formula is that the
total number of points required are (𝑚1)(𝑚2)(𝑚3)… (𝑚𝑑 ) which rises
exponentially with increase in dimensions, leading to the curse of
dimensionality. The sparse grid approach that is used in the current
work mitigates this issue to quite an extent by sampling significantly
fewer points which are subsets of the tensor grid structure. Though the
accuracy of the algorithm is not totally dimension-independent, it gets
weakened down to a logarithmic dependence.
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