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a b s t r a c t

An exact and an approximate formulation for the long-term extreme response of marine structures are discussed
and compared. It is well known that the approximate formulation can be evaluated in a simplified way by using
the first order reliability method (FORM), known for its computational efficiency. In this paper it is shown how
this can be done for the exact formulation as well. Characteristic values of the long-term extreme response are
calculated using inverse FORM (IFORM) for both formulations. A new method is proposed for the numerical
solution of the IFORM problem, resolving some convergence issues of a well-established iteration algorithm.
The proposed method is demonstrated for a single-degree-of-freedom (SDOF) example and the accuracy of the
long-term extreme response approximations is investigated, revealing that the IFORM methods provide good
estimates in a very efficient manner. The reduced number of required short-term response calculations provided
by the IFORM methods is expected to make full long-term extreme response analysis feasible also for more
complex systems.

© 2017 Elsevier Ltd. All rights reserved.

1. Introduction

For the evaluation of extreme responses in the design of marine
structures, a full long-term response analysis is recognized as the
most accurate approach [1,2]. However, the computational effort is
in many cases a limiting factor, and simplified approaches such as the
environmental contour methods [3–5] are frequently used in practice.
Over the last decade new methods have been proposed in an effort to
make the full long-term approach more efficient, either by reducing
the required number of short-term response calculations [2,6,7] or by
computing the short-term quantities more efficiently [8–10]. In this
paper we continue the development of robust and efficient methods for
full long-term response analysis.

A comparison of different models for long-term extreme response can
be found in [2]. In the present paper we focus on the models based on all
short-term extreme peaks. For these models the long-term distribution of
the short-term extreme value is formulated as an average of the short-
term extreme value distributions weighted by the distribution of the
environmental parameters. An exact formulation is obtained when an
ergodic averaging is used, but using the population mean yields a very
common approximate formulation.

* Corresponding author at: Multiconsult, Nedre Skøyen vei 2, 0213 Oslo, Norway.
E-mail address: finn.i.giske@ntnu.no (F.-I.G. Giske).

In Section 2 of this paper we compare the exact and the approximate
formulation, and show that the latter is non-conservative as it underesti-
mates the long-term extreme responses. Nevertheless, the approximate
formulation is commonly used because it readily lends itself to being
solved very efficiently in an approximate manner by the first order
reliability method (FORM) known from structural reliability. However,
as we show in Section 3, the exact formulation can also be solved using
FORM. To the authors’ knowledge this has not been done before.

Section 4 deals with the numerical solution of characteristic values
for the extreme response using inverse FORM (IFORM). IFORM was
introduced in [3] for calculation of extreme response using environ-
mental contours. The IFORM method has also been extended to a
more general reliability context [11,12]. In [2] the IFORM solution for
the extreme response of marine structures was found using a simple
iteration algorithm proposed in [12]. This iteration algorithm has some
convergence issues though, and these are addressed in the present paper.
A new method is proposed for dealing with the convergence issues, using
a sufficient increase condition along with a backtracking approach for
the maximization problem being solved. It should be mentioned that an
exact arc search algorithm [13] can also be used to obtain convergence,
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but this approach is expected to require a larger number of short-term
response calculations. Furthermore, the proposed method is simpler in
its form and will be easier to implement.

In Sections 5 and 6 a single-degree-of-freedom (SDOF) example is
given, demonstrating the use of the proposed method. Some numerical
results are also presented in order to compare the method with the stan-
dard iteration algorithm, and to assess the accuracy of the approximate
formulation and the IFORM approximations.

2. Long-term extreme response modelling

For the assessment of long-term extreme responses of marine struc-
tures, it is common to model the environmental conditions as a sequence
of short-term states during which the environmental processes are as-
sumed stationary [1]. Each short-term state is defined by a collection of
environmental parameters 𝑺 = [𝑆1, 𝑆2,… , 𝑆𝑛], with a joint probability
density function (PDF) 𝑓𝑺 (𝒔) which we assume is given. We note that in
order to be able to estimate 𝑓𝑺 (𝒔) in practice, an ergodicity assumption is
required for the environmental parameters [14]. The long-term situation
is composed of a large number 𝑁 of short-term conditions, each of
duration 𝑇̃ , giving a long-term time duration of 𝑇 = 𝑁𝑇̃ .

We denote by 𝑅̃ the largest peak of the response process during an
arbitrary short-term condition, and by 𝑅̃𝐿𝑇 the largest peak during the
entire long-term period. Assuming that the short-term extreme values
are independent, the long-term extreme value distribution 𝐹𝑅̃𝐿𝑇

(𝑟) is
obtained as

𝐹𝑅̃𝐿𝑇
(𝑟) = 𝐹𝑅̃(𝑟)

𝑁 , (1)

where 𝐹𝑅̃ (𝑟) is the cumulative distribution function (CDF) of the short-
term extreme value 𝑅̃.

2.1. Formulations based on the short-term extreme peaks

Let the CDF of the largest peak during a short-term condition with
environmental parameters 𝒔 be given by 𝐹𝑅̃|𝑺 (𝑟|𝒔). The exact long-term
CDF 𝐹𝑅̃ (𝑟) of the short-term extreme value is obtained when an ergodic
averaging is used [14,15], see also Section 12.4.2 of [1]. Thus we have
the formulation

𝐹𝑅̃ (𝑟) = exp
{

∫𝒔

(

ln𝐹𝑅̃|𝑺 (𝑟|𝒔)
)

𝑓𝑺 (𝒔) 𝑑𝒔
}

. (2)

The claim of exactness for the formulation (2) is perhaps somewhat
unfortunate, since e.g. the assumption of stationary environmental
processes is clearly not exact. The term ‘‘exact’’ is simply used here in the
sense that the formulation (2) is the mathematically correct approach
within the assumptions.

Usually, we are only interested in 𝐹𝑅̃ (𝑟) for large values of 𝑟, which
means that 𝐹𝑅̃|𝑺 (𝑟|𝒔) ≈ 1. Using the linear approximations of the
logarithm and the exponential function yields

𝐹𝑅̃ (𝑟) ≈ exp
{

−∫𝒔

(

1 − 𝐹𝑅̃|𝑺 (𝑟|𝒔)
)

𝑓𝑺 (𝒔) 𝑑𝒔
}

≈ 1 − ∫𝒔

(

1 − 𝐹𝑅̃|𝑺 (𝑟|𝒔)
)

𝑓𝑺 (𝒔) 𝑑𝒔.

From the properties of a PDF we know that the integral of 𝑓𝑺 (𝒔) over
all values of 𝒔 equals unity, and we obtain the approximation 𝐹𝑅̃ (𝑟) ≈
𝐹𝑅̃ (𝑟), where 𝐹𝑅̃ (𝑟) is the population mean

𝐹𝑅̃ (𝑟) = ∫𝒔
𝐹𝑅̃|𝑺 (𝑟|𝒔) 𝑓𝑺 (𝒔) 𝑑𝒔. (3)

The formulation (3) is a common approximation for the long-term CDF
of the short-term extreme value, partly because it readily lends itself
to being solved very efficiently by the FORM method. Furthermore, it
is easy to mistakenly consider (3) as exact, because the formulation
intuitively appears to be correct.

2.2. Connection with the average upcrossing rate formulation

If we assume that upcrossings of high levels are statistically indepen-
dent, the short-term extreme peak distribution is given by

𝐹𝑅̃|𝑺 (𝑟|𝒔) = exp
{

−𝜈 (𝑟|𝒔) 𝑇̃
}

, (4)

where 𝜈(𝑟|𝒔) denotes the short-term mean frequency of 𝑟-upcrossings.
For details we refer to Section 10.5 of [1]. Note that the expression (4)
is only valid for high levels, i.e. for relatively large values of 𝑟. Inserting
the expression (4) into (2) yields

𝐹𝑅̃ (𝑟) = exp
{

−𝑇̃ ∫𝒔
𝜈 (𝑟|𝒔) 𝑓𝑺 (𝒔) 𝑑𝒔

}

, (5)

and the relation (1) for the long-term extreme value distribution 𝐹𝑅̃𝐿𝑇
(𝑟)

gives that

𝐹𝑅̃𝐿𝑇
(𝑟) = exp

{

−𝑇 ∫𝒔
𝜈 (𝑟|𝒔) 𝑓𝑺 (𝒔) 𝑑𝒔

}

, (6)

where 𝑇 = 𝑁𝑇̃ is the long-term period. The expression (6) is also a
common model for the long-term extreme response [14]. The fact that
(2) and (6) are equivalent formulations is in agreement with what is
found in [2].

2.3. Non-conservativity of the approximate formulation

As a simple consequence of Jensen’s inequality, it can be show that
𝐹𝑅̃(𝑟) > 𝐹𝑅̃(𝑟). Indeed, since the natural logarithm is a strictly concave
function, Jensen’s inequality yields

ln
(

𝐸
[

𝐹𝑅̃|𝑺 (𝑟|𝑺)
])

> 𝐸
[

ln
(

𝐹𝑅̃|𝑺 (𝑟|𝑺)
)]

,

where 𝐸[⋅] denotes the expectation operator. From (2) and (3) we realize
that ln

(

𝐹𝑅̃ (𝑟)
)

= 𝐸
[

ln
(

𝐹𝑅̃|𝑺 (𝑟|𝑺)
)]

and 𝐹𝑅̃ (𝑟) = 𝐸
[

𝐹𝑅̃|𝑺 (𝑟|𝑺)
]

, which
means that ln

(

𝐹𝑅̃ (𝑟)
)

> ln
(

𝐹𝑅̃ (𝑟)
)

and hence 𝐹𝑅̃(𝑟) > 𝐹𝑅̃(𝑟).
From the result 𝐹𝑅̃(𝑟) > 𝐹𝑅̃(𝑟), it follows that exceedance proba-

bilities will be smaller for the approximate formulation (3) compared
to the exact formulation (2). This means that the formulation (3)
will underestimate the long-term extreme values, making it a non-
conservative approximation. Although the underestimation might not
be significant, it is important to be aware of such an issue.

3. FORM formulations for long-term extremes

In this section we will show how the integrals of both formulations
(2) and (3) can be solved in an approximate manner using the first
order reliability method (FORM) found in connection with structural
reliability analysis. In order to employ the FORM method, the formula-
tions have to be rewritten in terms of a reliability problem. A reliability
problem in the general sense is an integral written in the form

𝑝𝑓 = ∫𝐺(𝒗)≤0
𝑓𝑽 (𝒗) 𝑑𝒗,

where 𝑽 is a random vector with joint PDF 𝑓𝑽 (𝒗) [16]. Using reliability
analysis terminology, the function 𝐺(𝒗) is referred to as the limit state
function and the value of the integral 𝑝𝑓 is called the failure probability.

3.1. Expressing the approximate formulation in terms of a reliability problem

That the integral (3) can be rewritten as a reliability problem, is well
known. This is done by first rewriting

𝐹𝑅̃ (𝑟) = ∫𝒔
𝐹𝑅̃|𝑺 (𝑟|𝒔) 𝑓𝑺 (𝒔) 𝑑𝒔 = ∫𝒔 ∫𝑟≤𝑟

𝑓𝑅̃|𝑺 (𝑟|𝒔) 𝑑𝑟𝑓𝑺 (𝒔) 𝑑𝒔.

We then define the random vector 𝑽 = [𝑺, 𝑅̃], whose joint PDF will be
𝑓𝑽 (𝒗) = 𝑓𝑅̃|𝑺 (𝑟|𝒔) 𝑓𝑺 (𝒔). Thus we have

𝐹𝑅̃ (𝑟) = ∫𝑟≤𝑟
𝑓𝑽 (𝒗) 𝑑𝒗 = 1 − ∫𝑟−𝑟≤0

𝑓𝑽 (𝒗) 𝑑𝒗,
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